Advertisement

Gesund altern pp 177-186 | Cite as

Lipid Droplets im Kontext von zellulärem Stress

Chapter

Zusammenfassung

Mitochondrien sind essentiell für die Zelle, nicht umsonst werden sie auch als „Kraftwerke der Zelle“ bezeichnet. Dies ist darauf zurückzuführen, dass sie mittels der Atmungskette fast im Alleingang alles an Energie für die Zelle produzieren (Alberts et al., 2008). Dazu benötigen sie allerdings Sauerstoff. Dieser kann unter Umständen auch gefährlich für die Zelle werden, da er zur Erzeugung von ROS (Abkürzung für „reactive oxygen species“, also hochreaktive Sauerstoffmoleküle) führen kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alberts B, Wilson J und Hunt T (2008): Molecular biology of the cell. New York: Garland ScienceGoogle Scholar
  2. Blanchette-Mackie EJ, Dwyer NK, et al. (1995): Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36, 1211–1226Google Scholar
  3. Boise LH, Gonzalez-Garcia M, et al. (1993): bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608Google Scholar
  4. Boren J und Brindle KM (2012): Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 19, 1561–1570Google Scholar
  5. Brozek-Pluska B, Kopec M, Surmacki J et al.. (2015): Raman microspectroscopy of non-cancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies. Analyst 140, 2134–2143Google Scholar
  6. Dlugosz PJ, Billen LP, Annis MG et al. (2006): Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 25, 2287–2296Google Scholar
  7. Elchuri S, Oberley TD, Qi W et al. (2005): CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24, 367–380Google Scholar
  8. Finkel T und Holbrook NJ (2000): Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247Google Scholar
  9. Fujimoto T, Ohsaki Y, Cheng J, et al. (2008): Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130, 263–279Google Scholar
  10. Gerdes F, Tatsuta T und Langer T (2012): Mitochondrial AAA proteases – towards a molecular understanding of membrane-bound proteolytic machines. Biochim Biophys Acta 1823, 49–55Google Scholar
  11. Harman D (1972): The biologic clock: the mitochondria? J Am Geriatr Soc 20, 145–147.Google Scholar
  12. Held NM und Houtkooper RH (2015): Mitochondrial quality control pathways as determinants of metabolic health. Bioessays 37, 867–876.Google Scholar
  13. Kissova I, Salin B, Schaeffer J. et al. (2007): Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3, 329–336Google Scholar
  14. Klinger H, Rinnerthaler M, Lam YT et al. (2010): Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45, 533–542Google Scholar
  15. Kory N, Farese RV Jr. und Walther TC (2016): Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol 26, 535–546Google Scholar
  16. Krahmer N, Guo Y, Farese RV Jr. et al. (2009): SnapShot: Lipid Droplets. Cell 139, 1024–1024 e1021Google Scholar
  17. Mattson MP und Chan SL (2003): Calcium orchestrates apoptosis. Nat Cell Biol 5, 1041–1043Google Scholar
  18. Maynard S, Schurman SH, Harboe C, et al. (2009): Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30, 2–10Google Scholar
  19. McCord JM und Fridovich I (1969): Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055Google Scholar
  20. Murphy DJ (2001): The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40, 325–438Google Scholar
  21. Nouraini S, Six E, Matsuyama S, et al. (2000): The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-X(L). Mol Cell Biol 20, 1604–1615Google Scholar
  22. Oltvai ZN, Milliman CL und Korsmeyer SJ (1993): Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619Google Scholar
  23. Otera H und Mihara K (2012): Mitochondrial dynamics: functional link with apoptosis. Int J Cell Biol 2012, 821676Google Scholar
  24. Rautureau GJP, Day C und Hinds MG (2010): Intrinsically Disordered Proteins in Bcl-2 Regulated Apoptosis. Int J Mol Sci 11, 1808–1824Google Scholar
  25. Richter BW und Duckett CS (2000): The IAP proteins: caspase inhibitors and beyond. Sci STKE 2000, pe1Google Scholar
  26. Rinnerthaler M, Buttner S, Laun P et al. (2012): Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. PNAS 109, 8658–8663Google Scholar
  27. Rowe ER, Mimmack ML, Barbosa AD et al. (2016): Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1-3. J Biol Chem 291, 6664–6678Google Scholar
  28. Sazanov LA (2015): A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Bio 16, 375–388Google Scholar
  29. Singh R und Cuervo AM (2012): Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012, 282041Google Scholar
  30. Smaili SS, Hsu YT, Carvalho AC et al. (2003): Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res 36, 183–190Google Scholar
  31. Sohal RS und Dubey A (1994): Mitochondrial Oxidative Damage, Hydrogen-Peroxide Release, and Aging. Free Radical Bio Med 16, 621–626Google Scholar
  32. Tirinato L, Liberale C, Di Franco S et al. (2015): Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35–44Google Scholar
  33. Turrens JF (2003): Mitochondrial formation of reactive oxygen species. J Physiol 552, 335–344Google Scholar
  34. Wang CW (2016): Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta 1861, 793–805Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Zellbiologie und PhysiologieUniversität SalzburgSalzburgÖsterreich

Personalised recommendations