Skip to main content

Ethics of Beliefs

On Some Conceptual and Empirical Obstacles to Teaching the Ability for Positive Learning

  • Chapter
  • First Online:
Positive Learning in the Age of Information
  • 1044 Accesses

Abstract

This paper deals with the concept of positive learning (PL). The main goal is to provide a working definition of PL on which further refinements and extensions can be based. First, I formulate a list of desiderata for a definition of PL: I argue that a working definition of PL should (i) make the involved epistemic norms explicit, (ii) be flexible, and (iii) be empirically tractable. After that, I argue that a working definition of PL should focus on three basic epistemic norms (which I call Evidentialism, Degrees of Plausibility, and Non-Arbitrary Updates). Drawing on work on the ethics of belief and Bayesian inference, I highlight theoretical and empirical challenges that already follow from such basic assumptions. Finally, I formulate a working definition of PL based on the three epistemic norms and show that it fulfills the desiderata given above. Furthermore, I also provide a tentative agenda for future research that seeks to develop the notion of PL in various ways that are relevant to PLATO in general, and to a “practical philosophy of mind” in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (2014). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510- 530. https://doi.org/10.2307/2274239

  • Bénabou, R., & Tirole, J. (2002). Self-confidence and personal motivation. The Quarterly Journal of Economics, 117(3), 871-915. https://doi.org/10.1162/003355302760193913

  • Bracha, A., & Brown, D. J. (2012). Affective decision making: A theory of optimism bias. Games and Economic Behavior, 75(1), 67-80. https://doi.org/10.1016/j.geb.2011.11.004

  • Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2010). Bayesian models of cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 811-823. https://doi.org/10.1002/wcs.79

  • Chignell, A. (2017). The ethics of belief. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 ed.). Stanford University: The Metaphysics Research Lab. https://plato.stanford.edu/archives/spr2017/entries/ethics-belief/. Accessed: 27 July 2017.

  • Clark, A. (2016). Surfing Uncertainty. New York, NY: Oxford University Press.

    Google Scholar 

  • Clifford, W. K. (1999[1877]). The ethics of belief. In T. J. Madigan (Ed.), The ethics of belief and other essays (pp. 70-96). Amherst, NY: Prometheus Books.

    Google Scholar 

  • Feldman, J. (2016). What Are the “True” Statistics of the Environment? Cognitive Science, 1-33. https://doi.org/10.1111/cogs.12444

  • Friedman, H. H. (2017). Cognitive Biases that Interfere with Critical Thinking and Scientific Reasoning: A Course Module. Social Science Research Network (SSRN). https://ssrn.com/abstract=2958800. Accessed: 27 July 2017.

  • Geisler, W. S., & Ringach, D. (2009). Natural Systems Analysis. Visual Neuroscience, 26(1), 1-3. https://doi.org/10.1017/S0952523808081005

  • Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal Predictions in Everyday Cognition. Psychological Science, 17(9), 767773. https://doi.org/10.1111/j.1467-9280.2006.01780.x

  • Hohwy, J. (2013). The predictive mind. Oxford, England: Oxford University Press.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability theory. The logic of science. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Johnson, D. D. P., & Fowler, J. H. (2011). The evolution of overconfidence. Nature, 477(7364), 317-320. https://doi.org/10.1038/nature10384

  • Kiefer, A. (2017). Literal Perceptual Inference. In T. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group. https://doi.org/10.15502/9783958573185

  • Korn, C. W., Prehn, K., Park, S. Q., Walter, H., & Heekeren, H. R. (2012). Positively Biased Processing of Self-Relevant Social Feedback. The Journal of Neuroscience, 32(47), 16832-16844. https://doi.org/10.1523/jneurosci.3016-12.2012

  • Locke, J. (1836[1690]). An essay concerning human understanding (27. ed.). London, England: Tegg and Son.

    Google Scholar 

  • Loewenstein, G. (2006). The Pleasures and Pains of Information. Science, 312(5774), 704- 706. https://doi.org/10.1126/science.1128388

  • McKay, R. T., & Dennett, D. C. (2009). The evolution of misbelief. Behavioral and Brain Sciences, 32(06), 493. https://doi.org/10.1017/S0140525X09990975

  • Metzinger, T. K. (2017). The Problem of Mental Action. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group. https://doi.org/10.15502/9783958573208

  • Miller, B., & Record, I. (2013). Justified Belief in a Digital Age: On the Epistemic Implications of Secret Internet Technologies. Episteme, 10(02), 117-134. https://doi.org/10.1017/epi.2013.11

  • Oaksford, M., & Chater, N. (2009). Precis of Bayesian rationality: The probabilistic approach to human reasoning. Behavioral and Brain Sciences, 32(1), 69-84; discussion 85-120. https://doi.org/10.1017/S0140525X09000284

  • Oppenheimer, M., O’Neill, B. C., & Webster, M. (2008). Negative learning. Climatic Change, 89(1), 155-172. https://doi.org/10.1007/s10584-008-9405-1

  • Parker, J. A., & Brunnermeier, M. K. (2004). Optimal Expectations. NBER Working Paper No. w10707. Social Science Research Network (SSRN). https://ssrn.com/abstract=583705-. Accessed: 27 July 2017.

  • Pliushch, I. (2017). The Overtone Model of Self-Deception. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group. https://doi.org/10.15502/9783958573222

  • Sharot, T. (2011a). The Optimism Bias. New York, NY: Pantheon Books.

    Google Scholar 

  • Sharot, T. (2011b). The optimism bias. Current Biology, 21(23), R941-R945. https://doi.org/10.1016/j.cub.2011.10.030

  • Sharot, T., & Garrett, N. (2016). Forming Beliefs: Why Valence Matters. Trends in Cognitive Sciences, 20(1), 25-33. https://doi.org/10.1016/j.tics.2015.11.002

  • Sharot, T., Korn, C. W., & Dolan, R. J. (2011). How unrealistic optimism is maintained in the face of reality. Nature Neuroscience, 14(11), 1475-1479. https://doi.org/10.1038/nn.2949

  • Spohn, W. (2009). A Survey of Ranking Theory. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of Belief (pp. 185-228). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Spohn, W. (2012). The laws of belief: Ranking theory and its philosophical applications. Oxford, England: Oxford University Press.

    Google Scholar 

  • Talbott, W. (2016). Bayesian Epistemology. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 ed.). Stanford, CA: Metaphysics Research Lab at Stanford University. https://plato.stanford.edu/archives/win2016/entries/epistemology-bayesian/.Accessed: 27 July 2017.

  • Taylor, S. E., Kemeny, M. E., Reed, G. M., Bower, J. E., & Gruenewald, T. L. (2000). Psychological resources, positive illusions, and health. American psychologist, 55(1), 99-109. https://doi.org/10.1037/0003-066X.55.1.99

  • Trivers, R. (2000). The Elements of a Scientific Theory of Self-Deception. Annals of the New York Academy of Sciences, 907(1), 114-131. https://doi.org/10.1111/j.1749-6632.2000.tb06619.x

  • van Inwagen, P. (1996). It is wrong, everywhere, always, and for anyone, to believe anything upon insufficient evidence. In J. Jordan & D. Howard-Snyder (Eds.), Faith, Freedom, and Rationality (pp. 137-153). Lanham, MD: Rowman & Littlefield.

    Google Scholar 

  • van Roojen, M. (2016). Moral Cognitivism vs. Non-Cognitivism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 ed.). Standford, CA: Metaphysics Research Lab at Stanford University. https://plato.stanford.edu/archives/win2016/entries/moral-cognitivism/. Accessed: 27 July 2017.

  • Varki, A. (2009). Human uniqueness and the denial of death. Nature, 460(7256), 684-684.

    Google Scholar 

  • von Hippel, W., & Trivers, R. (2011). The evolution and psychology of self-deception. Behavioral and Brain Sciences, 34(1), 1-16. https://doi.org/10.1017/S0140525X10001354

  • Ward, A. F. (2013). Supernormal: How the Internet Is Changing Our Memories and Our Minds. Psychological Inquiry, 24(4), 341-348. https://doi.org/10.1080/1047840X.2013.850148

  • Wiese, W. (2016). Action Is Enabled by Systematic Misrepresentations. Erkenntnis, 1-20. https://doi.org/10.1007/s10670-016-9867-x

  • Wiese, W., & Metzinger, T. K. (2017). Vanilla PP for Philosophers: A Primer on Predictive Processing. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group. https://doi.org/10.15502/9783958573024

  • Zlatkin-Troitschanskaia et al. (2017). Positive Learning in the Age of Information. Unpublished Manuscript, Draft Proposal Cluster of Excellence, Johannes Gutenberg University Mainz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanja Wiese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiese, W. (2018). Ethics of Beliefs. In: Zlatkin-Troitschanskaia, O., Wittum, G., Dengel, A. (eds) Positive Learning in the Age of Information. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-19567-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-19567-0_18

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-19566-3

  • Online ISBN: 978-3-658-19567-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics