Advertisement

Ethics of Beliefs

On Some Conceptual and Empirical Obstacles to Teaching the Ability for Positive Learning
  • Wanja WieseEmail author
Chapter

Abstract

This paper deals with the concept of positive learning (PL). The main goal is to provide a working definition of PL on which further refinements and extensions can be based. First, I formulate a list of desiderata for a definition of PL: I argue that a working definition of PL should (i) make the involved epistemic norms explicit, (ii) be flexible, and (iii) be empirically tractable. After that, I argue that a working definition of PL should focus on three basic epistemic norms (which I call Evidentialism, Degrees of Plausibility, and Non-Arbitrary Updates). Drawing on work on the ethics of belief and Bayesian inference, I highlight theoretical and empirical challenges that already follow from such basic assumptions. Finally, I formulate a working definition of PL based on the three epistemic norms and show that it fulfills the desiderata given above. Furthermore, I also provide a tentative agenda for future research that seeks to develop the notion of PL in various ways that are relevant to PLATO in general, and to a “practical philosophy of mind” in particular.

Keywords

Bayesian Inference Beneficial Misrepresentation Cognitive Bias Epistemic Norms Ethics of Belief Moral Value Positive Illusion Positive Learning Prudential Value 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (2014). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510- 530.  https://doi.org/10.2307/2274239
  2. Bénabou, R., & Tirole, J. (2002). Self-confidence and personal motivation. The Quarterly Journal of Economics, 117(3), 871-915.  https://doi.org/10.1162/003355302760193913
  3. Bracha, A., & Brown, D. J. (2012). Affective decision making: A theory of optimism bias. Games and Economic Behavior, 75(1), 67-80.  https://doi.org/10.1016/j.geb.2011.11.004
  4. Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2010). Bayesian models of cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 811-823.  https://doi.org/10.1002/wcs.79
  5. Chignell, A. (2017). The ethics of belief. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 ed.). Stanford University: The Metaphysics Research Lab. https://plato.stanford.edu/archives/spr2017/entries/ethics-belief/. Accessed: 27 July 2017.
  6. Clark, A. (2016). Surfing Uncertainty. New York, NY: Oxford University Press.Google Scholar
  7. Clifford, W. K. (1999[1877]). The ethics of belief. In T. J. Madigan (Ed.), The ethics of belief and other essays (pp. 70-96). Amherst, NY: Prometheus Books.Google Scholar
  8. Feldman, J. (2016). What Are the “True” Statistics of the Environment? Cognitive Science, 1-33.  https://doi.org/10.1111/cogs.12444
  9. Friedman, H. H. (2017). Cognitive Biases that Interfere with Critical Thinking and Scientific Reasoning: A Course Module. Social Science Research Network (SSRN). https://ssrn.com/abstract=2958800. Accessed: 27 July 2017.
  10. Geisler, W. S., & Ringach, D. (2009). Natural Systems Analysis. Visual Neuroscience, 26(1), 1-3.  https://doi.org/10.1017/S0952523808081005
  11. Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal Predictions in Everyday Cognition. Psychological Science, 17(9), 767773.  https://doi.org/10.1111/j.1467-9280.2006.01780.x
  12. Hohwy, J. (2013). The predictive mind. Oxford, England: Oxford University Press.Google Scholar
  13. Jaynes, E. T. (2003). Probability theory. The logic of science. Cambridge, England: Cambridge University Press.Google Scholar
  14. Johnson, D. D. P., & Fowler, J. H. (2011). The evolution of overconfidence. Nature, 477(7364), 317-320.  https://doi.org/10.1038/nature10384
  15. Kiefer, A. (2017). Literal Perceptual Inference. In T. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group.  https://doi.org/10.15502/9783958573185
  16. Korn, C. W., Prehn, K., Park, S. Q., Walter, H., & Heekeren, H. R. (2012). Positively Biased Processing of Self-Relevant Social Feedback. The Journal of Neuroscience, 32(47), 16832-16844.  https://doi.org/10.1523/jneurosci.3016-12.2012
  17. Locke, J. (1836[1690]). An essay concerning human understanding (27. ed.). London, England: Tegg and Son.Google Scholar
  18. Loewenstein, G. (2006). The Pleasures and Pains of Information. Science, 312(5774), 704- 706.  https://doi.org/10.1126/science.1128388
  19. McKay, R. T., & Dennett, D. C. (2009). The evolution of misbelief. Behavioral and Brain Sciences, 32(06), 493.  https://doi.org/10.1017/S0140525X09990975
  20. Metzinger, T. K. (2017). The Problem of Mental Action. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group.  https://doi.org/10.15502/9783958573208
  21. Miller, B., & Record, I. (2013). Justified Belief in a Digital Age: On the Epistemic Implications of Secret Internet Technologies. Episteme, 10(02), 117-134.  https://doi.org/10.1017/epi.2013.11
  22. Oaksford, M., & Chater, N. (2009). Precis of Bayesian rationality: The probabilistic approach to human reasoning. Behavioral and Brain Sciences, 32(1), 69-84; discussion 85-120.  https://doi.org/10.1017/S0140525X09000284
  23. Oppenheimer, M., O’Neill, B. C., & Webster, M. (2008). Negative learning. Climatic Change, 89(1), 155-172.  https://doi.org/10.1007/s10584-008-9405-1
  24. Parker, J. A., & Brunnermeier, M. K. (2004). Optimal Expectations. NBER Working Paper No. w10707. Social Science Research Network (SSRN). https://ssrn.com/abstract=583705-. Accessed: 27 July 2017.
  25. Pliushch, I. (2017). The Overtone Model of Self-Deception. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group.  https://doi.org/10.15502/9783958573222
  26. Sharot, T. (2011a). The Optimism Bias. New York, NY: Pantheon Books.Google Scholar
  27. Sharot, T. (2011b). The optimism bias. Current Biology, 21(23), R941-R945.  https://doi.org/10.1016/j.cub.2011.10.030
  28. Sharot, T., & Garrett, N. (2016). Forming Beliefs: Why Valence Matters. Trends in Cognitive Sciences, 20(1), 25-33.  https://doi.org/10.1016/j.tics.2015.11.002
  29. Sharot, T., Korn, C. W., & Dolan, R. J. (2011). How unrealistic optimism is maintained in the face of reality. Nature Neuroscience, 14(11), 1475-1479.  https://doi.org/10.1038/nn.2949
  30. Spohn, W. (2009). A Survey of Ranking Theory. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of Belief (pp. 185-228). Dordrecht, Netherlands: Springer.Google Scholar
  31. Spohn, W. (2012). The laws of belief: Ranking theory and its philosophical applications. Oxford, England: Oxford University Press.Google Scholar
  32. Talbott, W. (2016). Bayesian Epistemology. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 ed.). Stanford, CA: Metaphysics Research Lab at Stanford University. https://plato.stanford.edu/archives/win2016/entries/epistemology-bayesian/.Accessed: 27 July 2017.
  33. Taylor, S. E., Kemeny, M. E., Reed, G. M., Bower, J. E., & Gruenewald, T. L. (2000). Psychological resources, positive illusions, and health. American psychologist, 55(1), 99-109.  https://doi.org/10.1037/0003-066X.55.1.99
  34. Trivers, R. (2000). The Elements of a Scientific Theory of Self-Deception. Annals of the New York Academy of Sciences, 907(1), 114-131.  https://doi.org/10.1111/j.1749-6632.2000.tb06619.x
  35. van Inwagen, P. (1996). It is wrong, everywhere, always, and for anyone, to believe anything upon insufficient evidence. In J. Jordan & D. Howard-Snyder (Eds.), Faith, Freedom, and Rationality (pp. 137-153). Lanham, MD: Rowman & Littlefield.Google Scholar
  36. van Roojen, M. (2016). Moral Cognitivism vs. Non-Cognitivism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 ed.). Standford, CA: Metaphysics Research Lab at Stanford University. https://plato.stanford.edu/archives/win2016/entries/moral-cognitivism/. Accessed: 27 July 2017.
  37. Varki, A. (2009). Human uniqueness and the denial of death. Nature, 460(7256), 684-684.Google Scholar
  38. von Hippel, W., & Trivers, R. (2011). The evolution and psychology of self-deception. Behavioral and Brain Sciences, 34(1), 1-16.  https://doi.org/10.1017/S0140525X10001354
  39. Ward, A. F. (2013). Supernormal: How the Internet Is Changing Our Memories and Our Minds. Psychological Inquiry, 24(4), 341-348.  https://doi.org/10.1080/1047840X.2013.850148
  40. Wiese, W. (2016). Action Is Enabled by Systematic Misrepresentations. Erkenntnis, 1-20.  https://doi.org/10.1007/s10670-016-9867-x
  41. Wiese, W., & Metzinger, T. K. (2017). Vanilla PP for Philosophers: A Primer on Predictive Processing. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and Predictive Processing. Frankfurt am Main, Germany: MIND Group.  https://doi.org/10.15502/9783958573024
  42. Zlatkin-Troitschanskaia et al. (2017). Positive Learning in the Age of Information. Unpublished Manuscript, Draft Proposal Cluster of Excellence, Johannes Gutenberg University Mainz.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Johannes Gutenberg University MainzMainzGermany

Personalised recommendations