Advertisement

Third Party Effect: Community Based Spreading in Complex Networks

  • Christian Bauckhage
  • César Ojeda
  • Rafet Sifa
  • Shubham AgarwalEmail author
Conference paper

Zusammenfassung

Ein wesentlicher Teil der Netzwerkforschung wurde dem Studium von Streuprozessen und Gemeinschaftserkennung gewidmet, ohne dabei die Rolle der Gemeinschaften bei den Merkmalen der Streuprozesse zu berücksichtigen. Hier verallgemeinern wir das SIR-Modell von Epidemien durch die Einführung einer Matrix von Gemeinschaftsansteckungsraten, um die heterogene Natur des Streuens zu erfassen, die durch die natürlichen Merkmale von Gemeinschaften definiert sind. Wir stellen fest, dass die Streufähigkeiten einer Gemeinschaft gegenüber einer anderen durch das interne Verhalten von Drittgemeinschaften beeinflusst wird. Unsere Ergebnisse bieten Einblicke in Systeme mit reichhaltigen Informationsstrukturen und in Populationen mit vielfältigen Immunreaktionen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1] I. Taxidou, A. Alzoghbi, P. M. Fischer, and C. Schöller, “Towards realtime lifetime prediction of information diffusion,” in Proc. of ACM Web Science, 2015.Google Scholar
  2. [2] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the dynamics of the news cycle,” in Proc. of ACM SIGKDD, 2009.Google Scholar
  3. [3] J. Yang and J. Leskovec, “Overlapping community detection at scale: a nonnegative matrix factorization approach,” in Proc. of ACM WSDM, 2013.Google Scholar
  4. [4] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3, pp. 75–174, 2010.Google Scholar
  5. [5] F. Shah and G. R. Sukthankar, “Using network structure to identify groups in virtual worlds.” in Proc. of ICWSM, 2011.Google Scholar
  6. [6] R. M. Anderson, R. M. May, and B. Anderson, Infectious diseases of humans: dynamics and control. WileyOnlineLibrary,1992,vol.28.Google Scholar
  7. [7] N. Antulov-Fantulin, A. Lančić, H. Štefančić, and M. Šikić, “FastSIR algorithm: A fast algorithm for the simulation of the epidemic spread in large networks by using the susceptible–infected–recovered compartment model,” Elsevier Information Sciences, vol. 239, pp. 226–240, 2013.Google Scholar
  8. [8] X. Wu and Z. Liu, “How community structure influences epidemic spread in social networks,” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 2, pp. 623–630, 2008.Google Scholar
  9. [9] W. Huang and C. Li, “Epidemic spreading in scale-free networks with community structure,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2007, no. 01, p. P01014, 2007.Google Scholar
  10. [10] M. Salathé and J. H. Jones, “Dynamics and control of diseases in networks with community structure,” PLoS Comput Biol, vol. 6, no. 4, p. e1000736, 2010.Google Scholar
  11. [11] A. F. Voter, “Introduction to the kinetic monte carlo method,” in Radiation Effects in Solids. Springer,2007,pp.1–23.Google Scholar
  12. [12] G. Lawyer, “Understanding the Influence of All Nodes in A Network,” Nature Scientific Reports, vol. 5, 2015.Google Scholar
  13. [13] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http://snap.stanford.edu/data, jun 2014.
  14. [14] M. E. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  • Christian Bauckhage
    • 1
    • 2
  • César Ojeda
    • 1
  • Rafet Sifa
    • 1
    • 2
  • Shubham Agarwal
    • 3
    Email author
  1. 1.Fraunhofer IAISSt. AusgustinGermany
  2. 2.University of BonnBonnGermany
  3. 3.Hewlett Packard Enterprise GmbHBöblingenGermany

Personalised recommendations