Skip to main content

Verbrennungsmodelle für Ottomotoren

  • Chapter
  • First Online:
Grundlagen Verbrennungsmotoren

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 9808 Accesses

Zusammenfassung

Für die Berechnung von motorischen Verbrennungsvorgängen kommen heute verschiedene Modellkategorien zum Einsatz, die sich z. T. sehr stark in ihrem Detaillierungsgrad, aber auch in ihren Rechenzeiterfordernissen unterscheiden (s. Stiesch 2003). Als phänomenologische Modelle werden dabei üblicherweise die Berechnungsmodelle bezeichnet, die die Verbrennung und Schadstoffbildung in Abhängigkeit übergeordneter physikalischer und chemischer Phänomene wie Strahlausbreitung, Gemischbildung, Zündung, Reaktionskinetik usw. vorausberechnen. Weil hierfür eine räumliche Aufteilung des Brennraums in Zonen verschiedener Temperatur und Zusammensetzung erforderlich ist, werden die Modelle auch als quasidimensionale Modelle bezeichnet. Die phänomenologischen (bzw. quasidimensionalen) Modelle grenzen sich auf der einen Seite von den nulldimensionalen (oder thermodynamischen) Modellen ab, die den Brennraum zu jedem Zeitpunkt vereinfachend als ideal durchmischt annehmen und die auf empirischen Ansätzen für die Brennrate beruhen. Auf der anderen Seite unterscheiden sich die phänomenologischen Verbrennungsmodelle von den CFD‐Codes (CFD = Computational Fluid Dynamics, vgl. Teil IX, Kap. 47–54), indem auf eine explizite Lösung des turbulenten dreidimensionalen Strömungsfeldes bewusst verzichtet wird (siehe Abb. 43.1). Dadurch kann die Rechenzeit erheblich reduziert werden. Für die Berechnung eines Motorarbeitsspieles liegt sie bei phänomenologischen Modellen im Bereich von Sekunden, bei CFD‐Codes dagegen im Bereich von Stunden (siehe Abb. 43.2). Phänomenologische Modelle werden deshalb insbesondere in Arbeitsprozessberechnungen zur Auslegung des Gesamtmotors eingesetzt, CFD‐Berechnungen dagegen für die Berechnung spezieller Fragestellungen, wie beispielsweise die Auslegung der Einlasskanal‐ und Arbeitsraumgeometrie oder der detaillierten Schadstoffbildung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bargende: Diss. Universität Stuttgart (2015)

    Google Scholar 

  • Bilzzard, N., Keck, J.: Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines. SAE paper 740191 (1976)

    Google Scholar 

  • Damköhler, G.: Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z. Elektrochem. Angew. Phys. Chem. 46, 601–626 (1940)

    Google Scholar 

  • Dinkelacker, F., Ratzke, A., Kuppa, K., Betageri, V., Butzbach, G.: Wege zu einem UHC-Berechnungsmodell für Gasmotoren. 14. Tagung „Der Arbeitsprozess des Verbrennungsmotors“, Graz. (2013)

    Google Scholar 

  • Elmqvist, C., Lindström, F., Angström, A., Grandin, B., Kalghatgi, G.: Optimizing engine concepts by using a simple model for knock prediction. SAE Technical Paper 2003-01-3123. (2003)

    Book  Google Scholar 

  • Franzke, D.: Beitrag zur Ermittlung eines Klopfkriteriums der ottomotorischen Verbrennung und zur Vorausberechnung der Klopfgrenze. Dissertation, TU München (1981)

    Google Scholar 

  • Galmiche, B., Halter, F., Foucher, F.: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures. Combust. Flame 159, 3286–3299 (2012)

    Article  Google Scholar 

  • Grill, M.: Objektorientierte Prozessrechnung von Verbrennungsmotoren. Dissertation, Universität Stuttgart (2006)

    Google Scholar 

  • Halstead, M.P., Kirsch, L.J., Prothero, A., Quinn, C.P.: A mathematical model for hydrocarbon autoignition at high pressures. Proc. Royal Soc. A 346, 515–538 (1975)

    Article  Google Scholar 

  • Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  • Keck, J.C.: Turbulent flame structure and speed in spark-ignition engines. Proc. 19th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, S. 1451–1466 (1982)

    Google Scholar 

  • Kleinschmidt, W.: Instationäre Wärmeübertragung in Verbrennungsmotoren. Fortschritt-Berichte VDI, Reihe 12 Nr. 383. (1999)

    Google Scholar 

  • Koch, T.: Numerischer Beitrag zur Charakterisierung und Vorausberechnung der Gemischbildung und Verbrennung in einem direkteingespritzten, strahlgeführten Ottomotor. Dissertation, Eidgenössische Technische Hochschule Zürich (2002)

    Google Scholar 

  • Kuppa, K., Goldmann, A., Schöffler, T., Dinkelacker, F.: Laminar flame properties of natural gas / hydrogen blends at gas engine conditions, Fuel (2017). Eingereicht 2017 (Genaue Quelle wird bis zur Drucklegung bekannt sein)

    Google Scholar 

  • Li, H., Miller, D.L., Cernansky, N.P.: Development of a reduced chemical kinetic model for prediction of preignition reactivity and autoignition of primary reference fuels. SAE Technical Paper 960498. (1996)

    Book  Google Scholar 

  • Livengood, J.C., Wu, P.C.: Correlation of autoignition phenomenon in internal combustion engines and rapid compression machines. Fifth Symposium (International) on Combustion., S. 347–356 (1955)

    Google Scholar 

  • Metghalchi, M., Keck, J.C.: Burning velocities of mixtures of air with methanol, Isooctane and Indolene at high pressure and temperature. Combust. Flame 48, 191–210 (1982)

    Article  Google Scholar 

  • Ratzke, A., Schöffler, T., Kuppa, K., Dinkelacker, F.: Validation of turbulent flame speed models for methane–air-mixtures at high pressure gas engine conditions. Combust. Flame 162, 2778–2787 (2015)

    Article  Google Scholar 

  • Scheele, M.: Potentialabschätzung zur Verbesserung des indizierten Wirkungsgrades kleinvolumiger Ottomotoren. Dissertation, Universität Hannover (1999)

    Google Scholar 

  • Spicher, U., Worret, R.: Entwicklung eines Klopfkriteriums zur Vorausberechnung der Klopfgrenze. FVV Abschlussbericht, Heft-Nr. 471. (2002)

    Google Scholar 

  • Stiesch, G.: Modeling engine spray and combustion processes. Springer, Berlin (2003)

    Book  Google Scholar 

  • Tabaczinsky, R.J.: Further refinement and validation of a turbulent flame propagation model for spark ignition engines. Combust. Flame 39, 111–121 (1980)

    Article  Google Scholar 

  • Wallesten, J.: Modelling of Flame Propagation in Spark Ignition Engines. Dissertation, Chalmers University of Technology, Göteborg (2003)

    Google Scholar 

  • Wirth, M.: Die turbulente Flammenausbreitung im Ottomotor und ihre charakteristischen Längenskalen, Dissertation, RWTH Aachen (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stiesch, G., Eckert, P., Dinkelacker, F., Rakowski, S. (2018). Verbrennungsmodelle für Ottomotoren. In: Merker, G., Teichmann, R. (eds) Grundlagen Verbrennungsmotoren. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-19212-9_43

Download citation

Publish with us

Policies and ethics