Advertisement

Einleitung zum Fach: Berechnendes Ingenieurswesen (Computational Engineering)

  • Jürgen Geiser
Chapter

Zusammenfassung

In der Einleitung soll ein Überblick zum Fach Computational Engineering gegeben werden. Das Fach soll eine Schnittstelle zwischen numerischer Mathematik , wissenschaftlichem Rechnen , Informatik und den angewandten Ingenieurswissenschaften sein. Das Fach kann erweitert werden zu dem Fach Computional Sciences , falls man noch die angewandten Naturwissenschaften hinzunimmt.

Literatur

  1. 1.
    Burstedde, C.: Was ist eigentlich Wissenschaftliches Rechnen? Forschung & Lehre, Ausgabe März 2013, 216–217 (2013)Google Scholar
  2. 2.
    Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture: A Hardware/Software Approach. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann, Burlington (1990)Google Scholar
  3. 3.
    Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical Linear Algebra for High-Performance Computers. Series: Software, Environments and Tools. SIAM, Philadelphia (1998)Google Scholar
  4. 4.
    Dziuk, G.: Theorie und Numerik partieller Differentialgleichungen. Walter de Gruyter, Berlin/New York (2010)Google Scholar
  5. 5.
    Frommer, A., Szyld, D.B.: On Asynchronous Iterations. J. Comput. Appl. Math. 123, 201–216 (2000)Google Scholar
  6. 6.
    Geiser, J.: Discretization methods with embedded analytical solutions for convection-diffusion dispersion-reaction equations and applications. J. Eng. Math. 57(1), 79–98 (2007). Springer, HeidelbergGoogle Scholar
  7. 7.
    Geiser, J.: Iterative operator-splitting methods with higher order time-integration methods and applications for parabolic partial differential equations. J. Comput. Appl. Math. 217, 227–242 (2008). Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Geiser, J.: Decomposition Methods for Partial Differential Equations: Theory and Applications in Multiphysics Problems. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2009)Google Scholar
  9. 9.
    Geiser, J.: Iterative Splitting Methods for Differential Equations. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2011)Google Scholar
  10. 10.
    Geiser, J.: Iterative operator-splitting methods for nonlinear differential equations and applications. Numer. Methods Partial Differ. Equ. 27(5), 1026–1054 (2011)Google Scholar
  11. 11.
    Geiser, J.: Operator splitting method for coupled problems: transport and Maxwell equations. Am. J. Comput. Math. 1, 163–175 (2011). Scientific Research PublishingGoogle Scholar
  12. 12.
    Geiser, J.: Coupled Systems: Theory, Models, and Applications in Engineering. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2014)Google Scholar
  13. 13.
    Geiser, J.: Recent advances in splitting methods for multiphysics and multiscale: theory and applications. J. Algoritm. Comput. Tech. 9(1), 65–94 (2015). Multi-Science, BrentwoodGoogle Scholar
  14. 14.
    Geiser, J.: Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering. Springer, Cham/Heidelberg/New York/Dordrecht/London (2016)Google Scholar
  15. 15.
    Grossmann, Chr., Roos, H.G., Stynes, M.: Numerical Treatment of Partial Differential Equations. Universitext, 1. Aufl. Springer, Berlin/Heidelberg/New York (2007)Google Scholar
  16. 16.
    Kirk, D., Hwu, W.-M.: Programming Massively Parallel Processors: A Hands-On Approach. 2. Aufl. Morgan Kaufman, Cambridge (2012)Google Scholar
  17. 17.
    McLachlan, R.I., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)Google Scholar
  18. 18.
    Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann, Burlington (1996)Google Scholar
  19. 19.
    Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Piel, A.: Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas. Springer, Berlin/Heidelberg/New York (2010)Google Scholar
  21. 21.
    Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison Wesley, New York/Boston/San Francisco (2010)Google Scholar
  22. 22.
    Schwandt, H.: Parallele Numerik: Eine Einführung. Vieweg and Teubner Verlag, Wiesbaden (2003)Google Scholar
  23. 23.
    Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley (2007)Google Scholar
  24. 24.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics Artech House, Boston/London (2005)Google Scholar
  25. 25.
    von Monien, B., Röttger, M., Schroeder, U.-P.: Einführung in Parallele Algorithmen und Architekturen. vmi Buch, Bonn (1998)Google Scholar
  26. 26.
    Weinan, E.: Principle of Multiscale Modelling. Cambridge University Press, Cambridge (2010)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jürgen Geiser
    • 1
  1. 1.Ruhr-Universität BochumBochumDeutschland

Personalised recommendations