Skip to main content

Epigenetics and Genetic Determinism (in Popular Science)

  • Chapter
  • First Online:

Abstract

When the regulative influence of the environment on genes is seen in the postgenomic discourse as evidence against genetic determinism, epigenetics seems to solve the problem. This interpretation is premature. The argument of gene–environment interaction refutes only a simple version of genetic determinism, whereas a more complex version of it not only persists, but is actually promoted by the mask of the “solution”. The reason for this covert genetic determinism is an asymmetric perception of gene–environment interaction. Often popular scientific representations employ different information criteria. While genetic information is there understood in the sense of an intentional instruction, epigenetic information is thought to apply only to its regulation. For a comprehensive refutation of genetic determinism, reference to the interactions between genes and environment is insufficient and therefore the whole process of the development of information must be taken into account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartram, C. R., Beckmann, F. B., Breyer, F., Fey, G., Fonatsch, C., Irrgang, et al. (2000). Probleme genetischer Determiniertheit. In C. R. Bartram, F. B. Beckmann, F. Breyer, G. Fey, C. Fonatsch, B. Irrgang, et al. (Eds.), Humangenetische Diagnostik. Wissenschaftliche Grundlagen und gesellschaftliche Konsequenzen (pp. 5–50). Berlin: Springer.

    Google Scholar 

  • Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of the Life Sciences, 26, 59–80.

    Article  Google Scholar 

  • Cooney, C. A. (2007). Epigenetics—DNA-based mirror of our environment? Disease Markers, 23, 121–137.

    Article  Google Scholar 

  • Crick, F. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 7, 139–163.

    Google Scholar 

  • Der Spiegel. (2010). Der Sieg über die Gene. Klüger, gesünder, glücklicher: Wie wir unser Erbgut überlisten können. Der Spiegel, 32, 1.

    Google Scholar 

  • Fischer, A. (2013). Die Epigenetik neurodegenerativer Erkrankungen. Spektrum Wiss, 7, 30–38.

    Google Scholar 

  • Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 10604–10609.

    Article  Google Scholar 

  • Galton, F. (1875). The history of twins as a criterion of the relative powers of nature and nurture. Journal of the Anthropological Institute of Great Britain and Ireland, 5, 391–406.

    Article  Google Scholar 

  • Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., Gluckman, P. D., & Hanson, M. A. (2007). Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatric Research, 61, 5R–10R.

    Article  Google Scholar 

  • Griffith, P. E. (2006). The fearless vampire conservator: Philip Kitcher, genetic determinism, and the informational gene. In E. Neumann-Held & C. Rehmann-Sutter (Eds.), Genes in development: Re-reading the molecular paradigm (pp. 175–198). Durham: Duke University Press.

    Chapter  Google Scholar 

  • Griffith, P. E., & Knight, R. D. (1998). What is the developmentalist challenge? Philosophy of Science, 65, 253–258.

    Article  Google Scholar 

  • Griffith, P. E., & Stotz, K. (2013). Genetics and philosophy—An introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Holliday, R. (1990). Mechanisms for the control of gene activity during development. Biological Reviews of the Cambridge Philosophical Society, 4, 431–471.

    Article  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981, 82–96.

    Article  Google Scholar 

  • Kitcher, P. (2001). Battling the undead: How (and how not) to resist genetic determinism. In R. Singh, K. Krimbas, D. Paul, & J. Beatty (Eds.), Thinking about evolution: Historical, philosophical and political perspectives (pp. 396–414). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lemke, T. (2002). Mutationen des Gendiskurses. Der genetische Determinismus nach dem Humangenomprojekt. Leviathan: Berliner Zeitschrift für Sozialwissenschaft, 30, 400–425.

    Google Scholar 

  • Mahner, M., & Bunge, M. A. (2000). Philosophische grundlagen der biologie. Berlin: Springer.

    Book  Google Scholar 

  • Markert, D. (2008). Das Jungbrunnenwunder. Der Markert-Plan für 120 Jahre Lebenskraft. Hannover: Schlütersche.

    Google Scholar 

  • Midgley, M. (1984). Reductivism, fatalism and sociobiology. Journal of Applied Philosophy, 1, 107–114.

    Article  Google Scholar 

  • Oyama, S. (1985). The ontogeny of information: Developmental systems and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Riggs, A. D., Russo, V. E. A., & Martienssen, R. A. (1996). Epigenetic mechanisms of gene regulation. Plainview: Cold Spring Harbor.

    Google Scholar 

  • Schuol, S. (2014). Kritik der Eigenverantwortung: Die Epigenetik im öffentlichen Präventionsdiskurs zum Metabolischen Syndrom. In V. Lux & T. Richter (Eds.), Vererbt, codiert, übertragen: Kulturen der Epigenetik (pp. 271–282). Berlin: De Gruyter.

    Google Scholar 

  • Staege, B. (2014). Was ist Epigenetik? http://www.biomed-staege.de/html/epigenetik.html. Accessed May 8, 2016.

  • Sterelny, K., & Griffith, P. E. (1999). Sex and death: An introduction to the philosophy of biology. Chicago: University of Chicago Press.

    Google Scholar 

  • Stotz, K. (2006). Molecular epigenesis: Distributed specificity as a break in the central dogma. History and Philosophy of the Life Sciences, 28, 533–548.

    Google Scholar 

  • Tappeser, B., & Hoffmann, A.-K. (2006). Das überholte Paradigma der Gentechnik. Zum zentralen Dogma der Molekularbiologie fünfzig Jahre nach der Entdeckung der DNA-Struktur. Umwelt, Medizin, Gesellschaft, 19, 17–22.

    Google Scholar 

  • Thomas, W. I., & Thomas, D. S. (1928). The child in America: Behavior problems and programs. New York: Knopf.

    Google Scholar 

  • van Speybroeck, L. (2002). From epigenesis to epigenetics—The case of C. H, Waddington. Annals of the New York Academy of Sciences, 981, 61–81.

    Article  Google Scholar 

  • Vivamus. (2014). Anti-aging via epigenetik. Wissenschaftliche Hintergründe von age LOC und R2. http://www.vivamus-consulting.de/index.php?kat=34. Accessed May 8, 2016.

  • Waddington, C. H. (1952). The evolution of developmental systems. In D. A. Herbert (Ed.), Proceedings of the Twenty-Eighth Meeting of the Australian and New Zealand Association for the Advancement of Science (pp. 155–159). Brisbane: A.H Tucker Government Printer.

    Google Scholar 

  • Waddington, C. H. (1957). The Strategy of the genes: A discussion of some aspects of theoretical biology. London: Allen and Unwin.

    Google Scholar 

  • Waddington, C. H. (1968). The basic ideas of biology. In Ders. (Eds.), Towards a Theoretical Biology. An IUBS symposium (pp. 1–32). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genomics and Human Genetics, 9, 233–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schuol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Schuol, S. (2017). Epigenetics and Genetic Determinism (in Popular Science). In: Heil, R., Seitz, S., König, H., Robienski, J. (eds) Epigenetics. Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-14460-9_4

Download citation

Publish with us

Policies and ethics