Skip to main content

Regression

  • Chapter
  • First Online:
Book cover Data Analytics

Abstract

Regression estimates functional dependencies between features. Linear regression models can be efficiently computed from covariances but are restricted to linear dependencies. Substitution allows us to identify specific nonlinear dependencies by linear regression. Robust regression finds models that are robust against outliers. A popular family of nonlinear regression methods are universal approximators. We present two well-known examples for universal approximators from the field of artificial neural networks: the multilayer perceptron and radial basis function networks. Universal approximators can realize arbitrarily small training errors, but cross-validation is required to find models with low validation errors that generalize well on other data sets. Feature selection allows us to include only relevant features in regression models leading to more accurate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC–19:716–723, 1974.

    Google Scholar 

  2. Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross–validation. Numerical Mathematics, 31:377–403, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.

    Google Scholar 

  5. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

    Article  Google Scholar 

  6. P. J. Huber. Robust Statistics. Wiley, New York, 2nd edition, 2009.

    Book  MATH  Google Scholar 

  7. A. N. Kolmogorov. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR, 144:679–681, 1957.

    MathSciNet  MATH  Google Scholar 

  8. R. Meiria and J. Zahavi. Using simulated annealing to optimize the feature selection problem in marketing applications. European Journal of Operational Research, 171(3):842–858, 2006.

    Article  MATH  Google Scholar 

  9. J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281–294, 1989.

    Article  Google Scholar 

  10. F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Reviews, 65:386–408, 1958.

    Article  MathSciNet  Google Scholar 

  11. P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley, New York, 1987.

    Book  MATH  Google Scholar 

  12. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error backpropagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing. Explorations in the Microstructure of Cognition, volume 1, pages 318–362. MIT Press, Cambridge, 1986.

    Google Scholar 

  13. W. Siedlecki and J. Sklansky. A note on genetic algorithms for large–scale feature selection. Pattern Recognition Letters, 10(5):335–347, 1989.

    Article  MATH  Google Scholar 

  14. S. Vieira, J. M. Sousa, and T. A. Runkler. Multi-criteria ant feature selection using fuzzy classifiers. In C. A. Coello Coello, S. Dehuri, and S. Ghosh, editors, Swarm Intelligence for Multi-objective Problems in Data Mining, pages 19–36. Springer, 2009.

    Google Scholar 

  15. P. J. Werbos. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting (Adaptive and Learning Systems for Signal Processing, Communications and Control Series). Wiley–Interscience, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Runkler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Runkler, T. (2016). Regression. In: Data Analytics. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-14075-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-14075-5_6

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-14074-8

  • Online ISBN: 978-3-658-14075-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics