Advertisement

Lernen durch Verstärkung (Reinforcement Learning)

  • Wolfgang ErtelEmail author
Chapter
  • 35k Downloads
Part of the Computational Intelligence book series (CI)

Zusammenfassung

Alle bisher beschriebenen Lernverfahren arbeiten mit Lehrer. Sie gehören also zur Klasse des Supervised Learning. Beim Lernen mit Lehrer soll der Agent anhand von Trainingsdaten eine Abbildung der Eingabevariablen auf die Ausgabevariablen lernen. Wichtig ist hierbei, dass für jedes einzelne Trainingsbeispiel sowohl alle Werte der Eingabevariablen als auch alle Werte der Ausgabevariablen vorgegeben sind. Man braucht eben einen Lehrer, beziehungsweise eine Datenbank, in der die zu lernende Abbildung für genügend viele Eingabewerte näherungsweise definiert ist. Einzige Aufgabe des maschinellen Lernverfahrens ist es, das Rauschen aus den Daten herauszufiltern und eine Funktion zu finden, die auch zwischen den gegebenen Datenpunkten die gesuchte Abbildung gut approximiert.

Beim Lernen durch Verstärkung (engl. reinforcement learning) ist die Situation eine andere, ungleich schwierigere, denn hier sind keine Trainingsdaten verfügbar. Wir starten mit einem ganz einfachen anschaulichen Beispiel aus der Robotik, das dann zur Illustration der verschiedenen Verfahren dient.

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Institut für Künstliche IntelligenzHochschule Ravensburg-WeingartenWeingartenDeutschland

Personalised recommendations