Advertisement

The moral economy of synthetic biology

  • Bernadette Bensaude Vincent
Chapter
Part of the Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society book series (TEWG)

Abstract

In merging engineering and biology and electing design as the main focus of research, synthetic biology is likely to bring deep changes in the set of norms and values that used to rule scientific research. Is it generating a new profile of biologist? Based on Lorraine Daston’s concept of the moral economy of science, this paper explores the affects, values and norms attached to the research activities of synthetic biologists. It endeavors to disentangle the values and norms underlying their writings and interviews More broadly, the purpose is to follow the genesis of a moral economy of science based on a specific case.

Keywords

Synthetic Biology Epistemic Virtue Moral Economy Genetic Circuit Synthetic Biologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeli Aguiton, S. (2014). La démocratie des chimères: gouvernement des risques et des critiques de la biologie synthétique, en France et aux Etats-Unis. Thesis/Dissertation. Institut d’études politiques Sciences-Po Paris.Google Scholar
  2. Angeli Aguiton, S., & Tocchetti, S. (2015) Is a FBI agent a DIY biologist as any other? Science Technology and Human Values (in print).Google Scholar
  3. Belt, H. v. d. (2009). Playing God in Frankenstein’s footsteps: Synthetic biology and the meaning of life. Nanoethics, 3(3), 257–268.CrossRefGoogle Scholar
  4. Bensaude Vincent, B. (2013). Discipline-building in synthetic biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 122–129.CrossRefGoogle Scholar
  5. Boldt, J., & Müller, O. (2008). Newtons of the leaves of grass. Nature Biotechnology, 26(4), 387–389.CrossRefGoogle Scholar
  6. Brockman, J. (2008). Engineering Biology: A Talk with Drew Endy. Edge: The Third Culture. http://www.edge.org/3rd_culture/endy08/endy08_index.html. Accessed: 15 May 2015.
  7. Calvert, J., & Fujimura, J. H. (2009). Calculating life? EMBO Reports, 10(1S), S46–S49. Carlson, R. (2001). Biological Technology in 2050. http://www.synthesis.cc/Biol_Tech_2050.pdf. Accessed: 27 January 2015.CrossRefGoogle Scholar
  8. Carlson, R.H. (2010). Biology is Technology: The Promise, Peril, and New Business of Engineering Life (Vol. 2010). Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  9. Church, G., & Regis, E. (2012). Regenesis: How Synthetic Biology Will Reinvent Nature & Ourselves. New York: Basic Books.Google Scholar
  10. Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A., & Weiss, R. (2014). Realizing the potential of synthetic biology. Nature Reviews Molecular Cell Biology, 15(4), 289–294.CrossRefGoogle Scholar
  11. Daston, L. (1995). The moral economy of science. Osiris, 10, 2–24.CrossRefGoogle Scholar
  12. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.Google Scholar
  13. Deplazes, A. (2009). Piecing together a puzzle. EMBO Reports, 10, 428–432.CrossRefGoogle Scholar
  14. Drexler, E. (1986). Engines of Creation. New York: Anchor Books.Google Scholar
  15. Endy, D. (2005). Foundations for engineering biology. Nature, 438, 449–453.CrossRefGoogle Scholar
  16. Fassin, D. (2009). Les économies morales revisitées. Annales. Histoire, Sciences sociales, 64(6), 1237–1266.Google Scholar
  17. Fox Keller, E. (1995). Refiguring Life: Metaphors of Twentieth-Century Biology. New York: Columbia University Press.Google Scholar
  18. Fox Keller, E. (2002). Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Harvard: Harvard University Press.Google Scholar
  19. Hilgartner, S. (2012). Novel Constitutions? New Regimes of Openness in Synthetic Biology. BioSocieties, 7, 188–207.CrossRefGoogle Scholar
  20. Hilgartner, S. (2015). Capturing the Imaginary: Vanguards, Visions and the Synthetic Biology Revolution. In: S. Hilgartner, C. Miller, R. Hagendijk (eds.), Science & Democracy: Knowledge as Wealth and Power in the Biosciences and Beyond (pp. 33–55). New York, Abingdon: Routledge.Google Scholar
  21. Jones, R. (2004). Soft Machines. Oxford, New York: Oxford University Press.Google Scholar
  22. Loeve, S. (2014). Summary Report of the Paris Workshop Worldviews and Values in Synthetic Biology. Synenergene. http://synenergene.eu/resource/summary-report-paris-workshop-worldviews-and-values-synthetic-biology. Accessed: 5 May 2015.
  23. Maasen, S., & Weingart, P. (2000). Metaphors and the Dynamics of Knowledge. London: Routledge.CrossRefGoogle Scholar
  24. Nandagopal, N., & Elowitz, M. B. (2011). Synthetic biology: integrated gene circuits. Science, 333(6047), 1244–1248.CrossRefGoogle Scholar
  25. Nordmann, A. (2015). Synthetic biology at the limits of science. In: B.M. Giese, C. Pade, H. Wigger, A. von Gleich (eds.), Synthetic Biology: Character and Impact (pp. 31–58). Springer International Publishing Switzerland.Google Scholar
  26. O’Malley, M.A. (2009). Making knowledge in synthetic biology: Design meets kludge. Biological Theory, 4, 378–389. http://www.maureenomalley.org/downloads/OMalley-BioTheo-Design-Kludge.pdf. Accessed: 15 May 2015.CrossRefGoogle Scholar
  27. O’Malley, M.A., Powell, A., Davies, J.F., & Calvert, J. (2008). Knowledge-making distinctions in synthetic biology. BioEssays, 30(1), 57–65.CrossRefGoogle Scholar
  28. Raimbault, B., & Joly, P.B. (forthcoming). On the emergence of techno-scientific fields: The case of Synthetic Biology…Google Scholar
  29. Salter, B., & Salter, C. (2010). Governing innovation in the biomedicine knowledge economy: stem cell science in the USA. Science And Public Policy, 37(2), 87–100.CrossRefGoogle Scholar
  30. Silver, L. (2007). Scientists push the boundaries of human life. Newsweek, 3 June 2007. http://www.newsweek.com/scientists-push-boundaries-human-life–101723. Accessed: 15 May 2015.
  31. Smalley, R. (2001). Of Chemistry, Love and Nanobots: How soon will we see the nanometer- scale robots envisaged by K. Eric Drexler and other molecular nanotechnologists? The simple answer is never. Scientific American, Sept. 2001, 76–77.Google Scholar
  32. Sprinzack, D., & Elowitz, M.B. (2005). Reconstruction of genetic circuits. Nature, 348, 443–448.CrossRefGoogle Scholar
  33. Thompson, E. P. (1971). The moral economy of the English crowd in the eighteenth century. Past & Present, 50, 76–136.CrossRefGoogle Scholar
  34. Venter, C. (2007). A DNA-Driven World: The 32nd Richard Dimbleby Lecture. BBC One, 4 December 2007. www.bbc.co.uk/pressoffice/pressreleases/stories/2007/12_december/05/dimbleby.shtml. Accessed: 26 January 2015.
  35. Wade, N. (2010). Researchers Say They Created a ‘Synthetic Cell’. The New York Times, 20 May 2010. http://www.nytimes.com/2010/05/21/science/21cell.html. Accessed: 15 May 2015.

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Bernadette Bensaude Vincent
    • 1
  1. 1.CetcopraUniversité Paris 1 Panthéon-SorbonneParisFrance

Personalised recommendations