Skip to main content

Philosophy of Late-Modern Technology

Towards a Clarification and Classification of Synthetic Biology

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Synthetic biology is the crystallization point of late-modern technoscientific hypes and hopes. In 2010 the research entrepreneur Craig Venter announced the forthcoming advent of an epochal break and envisioned a fundamental shift in our technical capabilities. Synthetic organisms “are going to potentially create a new industrial revolution if we can really get cells to do the production we want; […] they could help wean us off of oil, and reverse some of the damage to the environment like capturing back carbon dioxide” (Venter 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Csete, M.E., & Doyle, J.C. (2002). Reverse Engineering of Biological Complexity. Science, 295, 1664–69.

    Article  Google Scholar 

  • Deplazes, A., & Huppenbauer, M. (2009). Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and nonliving matter. Systems and Synthetic Biology, 3, 55–63.

    Article  Google Scholar 

  • DFG, acatech, & Leopoldina (2009). Deutsche Forschungsgemeinschaft (German Research Foundation), acatech – Deutsche Akademie der Technikwissenschaften (German academy of technological sciences), Leopoldina – Deutsche Akademie der Naturforscher (German academy of natural scientists). Synthetic Biology: Positions. Weinheim: Wiley VCH.

    Google Scholar 

  • Drexler, K.E. (1990). Engines of Creation: The Coming Era of Nanotechnology. Oxford: Oxford University Press.

    Google Scholar 

  • Drubin, D.A., Way, J.C., & Silver, P.A. (2007). Designing biological systems. Genes & Development, 21, 242–254.

    Article  Google Scholar 

  • Dupuy, J.P. (2004). Complexity and Uncertainty. A Prudential Approach to Nanotechnology. In: European Commission, Nanotechnologies: A Preliminary Risk Analysis on the Basis of a Workshop Organized in Brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission (pp. 71–94). http://ec.europa.eu/health/ph_risk/documents/ev_20040301_en.pdf. Accessed: 1 May 2014.

  • Ebeling, W., & Feistel, R. (1994). Chaos und Kosmos: Prinzipien der Evolution. Heidelberg, Berlin: Spektrum.

    Google Scholar 

  • Endy, D. (2005). Foundations for engineering biology. Nature, 438, 449–453.

    Article  Google Scholar 

  • ETAG (2009). Making a perfect life. Bioengineering in the 21st century. European Technology Assessment Group, Rathenau Institute. The Hague.

    Google Scholar 

  • ETC (2007). ETC Group. Extreme Genetic Engineering. An Introduction to Synthetic Biology. http://www.etcgroup.org/sites/www.etcgroup.org/files/publication/602/01/synbioreportweb.pdf. Accessed: 1 May 2014.

  • European Commission (2005). Synthetic Biology – Applying Engineering to Biology. Report of a NEST-High Level Expert Group EUR 21796. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., … & Venter, J.C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56.

    Article  Google Scholar 

  • Giese, B., Koenigstein, S., Wigger, H., Schmidt, J.C., & Gleich, A. v. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333.

    Article  Google Scholar 

  • Grunwald, A. (2008). Auf dem Weg in eine nanotechnologische Zukunft. Philosophisch-ethische Fragen. Freiburg: Alber.

    Google Scholar 

  • Grunwald, A. (2012). Synthetische Biologie als Naturwissenschaft mit technischer Ausrichtung. Plädoyer für eine Hermeneutische Technikfolgenabschätzung. Technikfolgenabschätzung— Theorie und Praxis, 21(2), 10–15.

    Google Scholar 

  • Hubig, C. (2006). Die Kunst des Möglichen: Technikphilosophie als Reflexion der Medialität (Vol. 1). Bielefeld: transcript.

    Book  Google Scholar 

  • Jonas, H. (1984). The Imperative of Responsibility. In Search of an Ethics for the Technological Age. Chicago: University of Chicago Press.

    Google Scholar 

  • Jonas, H. (1985). Laßt uns einen Menschen klonieren: Von der Eugenik zur Gentechnologie. In: H. Jonas, Technik, Medizin und Ethik: Praxis des Prinzips Verantwortung (pp. 162–203). Frankfurt/Main: Insel.

    Google Scholar 

  • Jones, R. (2004). Soft Machines. Oxford: Oxford University Press.

    Google Scholar 

  • Kaminski, A., Gelhard, A. (eds.) (2014). Zur Philosophie informeller Technisierung. Darmstadt: WBG.

    Google Scholar 

  • Karafyllis, N. (ed.) (2003). Biofakte. Paderborn: Mentis.

    Google Scholar 

  • Köchy, K. (2011). Konstruktion von Leben? Herstellungsideale und Machbarkeitsgrenzen in der Synthetischen Biologie. In: V. Gerhardt, K. Lucas, G. Stock (eds.), Evolution. Theorie, Formen und Konsequenzen eines Paradigmas in Natur, Technik und Kultur (pp. 233–242). Berlin, Heidelberg: Akademie Verlag.

    Google Scholar 

  • Köchy, K. (2012). Sind die Überlegungen von Hans Jonas zum Sonderstatus biologischer Technik angesichts der Entwicklung in der Synthetischen Biologie noch haltbar? In: M.B. Bondio, H. Siebenpfeiffer (eds.), Konzepte des Humanen. Ethische und kulturelle Herausforderungen (pp. 81–101). Freiburg, München: Alber.

    Google Scholar 

  • Krohn, W., & Küppers, G. (eds.) (1992). Selbstorganisation. Aspekte einer wissenschaftlichen Revolution. Braunschweig: Vieweg.

    Google Scholar 

  • Küppers, B.-O. (2000). Die Strukturwissenschaften als Bindeglied zwischen Natur- und Geisteswissenschaften. In: B.-O. Küppers (ed.), Die Einheit der Wirklichkeit. Zum Wissenschaftsverständnis der Gegenwart (pp. 89–110). München: Fink.

    Google Scholar 

  • Langer, J.S. (1980). Instabilities and Pattern Formation. Reviews of Modern Physics. 52, 1–28.

    Article  Google Scholar 

  • Luhmann, N. (2003). Soziologie des Risikos. Berlin, New York: de Gruyter.

    Google Scholar 

  • Luisi, P. L., & Stano, P. (2011). Synthetic biology: Minimal cell mimicry. Nature Chemistry, 3(10), 755–756.

    Article  Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. New York: Wiley.

    Google Scholar 

  • Nolfi, S., & Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. Cambridge: MIT Press.

    Google Scholar 

  • Nordmann, A. (2008). Technology Naturalized. A Challenge to Design for the Human Scale. In: P.E. Vermaas, P. Kroes, A. Light, S. Moore (eds.), Philosophy and Design: From Engineering to Architecture (pp. 173–184). Heidelberg, New York: Springer.

    Chapter  Google Scholar 

  • Pollack, J. (2002). Breaking the Limits on Design Complexity. In: M.C. Roco, W.S. Bainbridge (eds.), Converging Technologies for Improving Human Performance. Arlington: National Science Foundation.

    Google Scholar 

  • Pottage, A., & Sherman, B. (2007). Organisms and manufactures: on the history of plant inventions. Melbourne University Law Review, 31, 539–568.

    Google Scholar 

  • Pühler, A., Müller-Röber, B., & Weitze, M.-D. (eds.) (2011). Synthetische Biologie. Die Geburt einer neuen Technikwissenschaft. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Roco, M.C., & Bainbridge, W.S. (eds.) (2002). Converging Technologies for Improving Human Performance. Arlington: National Science Foundation.

    Google Scholar 

  • Schmidt, J.C. (2004). Unbounded Technologies: Working through the Technological Reductionism of Nanotechnology. In: D. Baird, A. Nordmann, J. Schummer (eds.), Discovering the Nanoscale (pp. 35–50). Amsterdam: IOS Press.

    Google Scholar 

  • Schmidt, J.C. (2008a). Instabilität in Natur und Wissenschaft. Berlin: de Gruyter.

    Book  Google Scholar 

  • Schmidt, J.C. (2008b). Towards a philosophy of interdisciplinarity. An attempt to provide a classification and clarification. Poiesis & Praxis, 5(1), 53–69.

    Article  Google Scholar 

  • Schmidt, J.C. (2011). Challenged by Instability and Complexity. On the methodological discussion of mathematical models in nonlinear sciences and complexity theory. In: C. Hooker (ed.), Philosophy of Complex Systems (pp. 223–254) (Series Philosophy of Sciences). Amsterdam: Elsevier.

    Google Scholar 

  • Schmidt, J.C. (2012a). Quellen des Nichtwissens. Ein Beitrag zur Wissenschafts- und Technikphilosophie des Nichtwissens. In: N. Janich, A. Nordmann, L. Schebek (eds.), Nichtwissenskommunikation in den Wissenschaften: interdisziplinäre Zugänge (pp. 93–124). Frankfurt a.M.: Lang.

    Google Scholar 

  • Schmidt, J.C. (2012b). Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur Prospektiven Technikfolgenabschätzung. Technikfolgenabschätzung – Theorie und Praxis, 21(2), 29–35.

    Google Scholar 

  • Schmidt, J.C. (2013). Defending Hans Jonas’ Environmental Ethics: On the Relation between Philosophy of Nature and Ethics. Environmental Ethics, 35, 461–479.

    Article  Google Scholar 

  • Schwille, P. (2011). Bottom-Up Synthetic Biology: Engineering in a Tinkerer’s World. Science, 333, 1252–54.

    Article  Google Scholar 

  • Stephan, A. (2007). Emergenz: Von der Unvorhersagbarkeit zur Selbstorganisation. Paderborn: Mentis.

    Google Scholar 

  • TESSY (2008). Towards a European Strategy for Synthetic Biology. Synthetic Biology in Europe. Information leaflet. http://www.tessy-europe.eu/public_docs/SyntheticBiology_TESSY-Information-Leaflet.pdf. Accessed: 23 May 2013.

  • Tucker, J.B., & Zilinskas, R.A. (2006). The promise and perils of synthetic biology. New Atlantis, 12(1), 25–45.

    Google Scholar 

  • Venter, J.C. (2010). The Creation of ‘Synthia’ – Synthetic Life. The Naked Scientist, Science Interview May 23, 2010. http://www.thenakedscientists.com/HTML/content/interviews/interview/1332/. Accessed: 20 June 2013. Weizsäcker, C.F. v. (1974). Die Einheit der Natur. München: dtv.

  • Westerhoff, H.V., & Palsson, B.O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22(10), 1249–52.

    Article  Google Scholar 

  • Wiener, N. (1968). Kybernetik: Regelung und Nachrichtenübertragung in Lebewesen und Maschine. Hamburg: Rowohlt.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Schmidt, J. (2016). Philosophy of Late-Modern Technology. In: Boldt, J. (eds) Synthetic Biology. Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-10988-2_2

Download citation

Publish with us

Policies and ethics