Advertisement

Experimente

  • Andreas Stadler
Chapter

Zusammenfassung

Chemie der Sulfide: Aus Metall- oder/und Halbmetall-Kationen entstehen in Verbindung mit Schwefel-Anionen die über 600 verschiedenen Sulfid-Minerale. Metallsulfide sind als Salze einer Schwefelwasserstoffsäure aufzufassen. Sulfide reagieren mit entsprechend stärkeren Säuren (wie z. B. Salzsäure) zu den entsprechenden Metallsalzen (bei Salzsäure eben zu Chloriden) und Schwefelwasserstoff H2S.

Literatur

  1. 1.
    Moëlo, E. Makovicki et.al., Eur. J. Mineral. 2008, 20, 7–46.Google Scholar
  2. 2.
    Balic-Zunic et.al., Acta Crystallographica Section B, Structural Science, ISSN 0108-7681, 2005.Google Scholar
  3. 3.
    Manolache et.al., Thin Solid Films 515 (2007) 5957–5960.Google Scholar
  4. 4.
    Sonowane et.al., Mat. Chem. & Physics 84 (2004) 221–227.Google Scholar
  5. 5.
    Rodriguez-Lazcano, J. Electrochem. Soc. 152 (2005) G635–G638.Google Scholar
  6. 6.
    Pejova et.al., Chem. Mater. 2008, 20, 2551–2565.Google Scholar
  7. 7.
    Dittrich et.al., Inst. Phys. Conf. Ser. No. 152 (1998) Section B: Thin Film Growth and Chacracterization, 293–296.Google Scholar
  8. 8.
    Laubis et.al., Inst. Phys. Conf. Ser. No. 152 (1998) Section B: Thin Film Growth and Chacracterization, 289–292.Google Scholar
  9. 9.
    Soni et.al., Bull. Mater. Sci. 26 (2003) 683–684.Google Scholar
  10. 10.
    Soliman et.al., Fizika A 11 (2002) 139–152.Google Scholar
  11. 11.
    Rabhi et.al., Materials Letters 62 (2008) 3576–3678.Google Scholar
  12. 12.
    Gutwirth et.al., MRS Symposium Proceedings, Vol. 918 (2006) 65–74.Google Scholar
  13. 13.
    Gutwirth et.al., J. Phys. Chem. Solids 68 (2007) 835–840.Google Scholar
  14. 14.
    Versavel et.al., Chem. Commun. 2006, 3543–3545.Google Scholar
  15. 15.
    Wagner et.al., Appl. Phys. A 79 (2004) 1563–1565.Google Scholar
  16. 16.
    Gutwirth et.al., J. Non-Cryst. Solids 354 (2008) 497–502.Google Scholar
  17. 17.
    Seeber et.al. Mat. Sci. Semicond. Proc. 2, 45–55, 1999.Google Scholar
  18. 18.
    Nunes et.al., Vacuum 52, 45–49, 1999.Google Scholar
  19. 19.
    Nunes et.al., Thin Solid Films 337 (1999) 176–179.Google Scholar
  20. 20.
    Lokhande, Uplane, Applied Surface Science 167 (2000) 243–246.Google Scholar
  21. 21.
    Mondragόn-Suárez et.al., Appl. Surf. Sci. 193, 52–59, 2002.Google Scholar
  22. 22.
    GümüÅŸ, Jour. Optoel. Adv. Mat., Vol. 8, No. 1, Feb. 2006, p. 299–303.Google Scholar
  23. 23.
    Jiménez-González et.al., Jour. Crystal Growth 192 (1998) 430–438.Google Scholar
  24. 24.
    Schuler et.al., Thin Solid Films 351, 125–131, 1999.Google Scholar
  25. 25.
    Natsume, Thin Solid Films 372 (2000) 30–36.Google Scholar
  26. 26.
    Musat et.al., Surf. Coat. Techno. 180–181, 659–662, 2004.Google Scholar
  27. 27.
    Valle et.al., J. Euro. Ceramic Soc. 24, 1009–1013, 2004.Google Scholar
  28. 28.
    Maity et.al., Sol. Energy Mat. & Sol. Cells 86, 217–227, 2005.Google Scholar
  29. 29.
    Deng et.al., Mat. Res. Bull. 41, 354–358, 2006.Google Scholar
  30. 30.
    Gal et.al., Thin Solid Films 361–362 (2000) 79–83.Google Scholar
  31. 31.
    Jia, Dissertation, Universität Stuttgart, 2005.Google Scholar
  32. 32.
    Ma et.al., Thin Solid Film 279, 213–215, 1996.Google Scholar
  33. 33.
    Jin et.al., Thin Solid Films 357, 98–101, 1999.Google Scholar
  34. 34.
    Chen et.al., Mat. Let. 48, 194–198, 2001.Google Scholar
  35. 35.
    Ting et.al., Mat. Chem. Phys. 72, 273–277, 2001.Google Scholar
  36. 36.
    Fang et.al., J. Cryst. Growth 247, 393–400, 2003.Google Scholar
  37. 37.
    Herrmann et.al., Surf. Coat. Techno. 174–175, 229–234, 2003.Google Scholar
  38. 38.
    Wang et.al., Thin Solid Films 491, 54–60, 2005.Google Scholar
  39. 39.
    Dimova-Malinovska et.al., Mat. Sci. Engin. B52, 59–62, 1998.Google Scholar
  40. 40.
    Chang et.al., J. Cryst. Growth 211, 93–97, 2000.Google Scholar
  41. 41.
    Chang et.al., Ceram. Int. 29, 245–250, 2003.Google Scholar
  42. 42.
    Yoo et.al., Thin Solid Films 480–481, 213–217, 2005.Google Scholar
  43. 43.
    Sieber et.al., Thin Solid Films 330, 108–113, 1998.Google Scholar
  44. 44.
    Ellmer et.al., Thin Solid Films 317, 413–416, 1998.Google Scholar
  45. 45.
    Tominaga et.al., Thin Solid Films 334, 35–39, 1998.Google Scholar
  46. 46.
    Fenske et.al., Thin Solid Films 333–344, 130–133, 1999.Google Scholar
  47. 47.
    Kluth et.al., Thin Solid Films 351, 247–253, 1999.Google Scholar
  48. 48.
    Szyszka et.al., Thin Solid Films 351, 164–169, 1999.Google Scholar
  49. 49.
    Szyszka, Thin Solid Films 351 (1999) 164–169.Google Scholar
  50. 50.
    Zhang et.al., Mat. Chem. Phys. 68 (2001) 233–238.Google Scholar
  51. 51.
    Müller et.al., Sol. Ener. Mat. Sol. Cel. 66 (2001) 275–281.Google Scholar
  52. 52.
    Müller et.al., Thin Solid Films 392 (2001) 327–333.Google Scholar
  53. 53.
    Tzolov et.al., Thin Solid Films 396, 274–279, 2001.Google Scholar
  54. 54.
    Hong et.al., J. Cryst. Growth 249, 461–469, 2003.Google Scholar
  55. 55.
    Müller et.al., Thin Solid Films 442 (2003) 158–162.Google Scholar
  56. 56.
    Hong et.al., Appl. Surf. Sci. 207, 341–350, 2003.Google Scholar
  57. 57.
    Szyszka et.al., Thin Solid Films 442, 179–183, 2003.Google Scholar
  58. 58.
    Fu et.al., Microel. J. 35, 383–387, 2004.Google Scholar
  59. 59.
    Oh et.al., J. Cryst. Growth 274, 453–457, 2005.Google Scholar
  60. 60.
    Lin et.al., Surf. Coat. Techno. 190, 39–47, 2005.Google Scholar
  61. 61.
    Groenen et.al., Appl. Surf. Sci. 173, 40–43, 2001.Google Scholar
  62. 62.
    Lee et.al., J. Cryst. Growth 268, 596–601, 2004.Google Scholar
  63. 63.
    Kim, Kim, Materials Letters 41 (1999) 159–163.Google Scholar
  64. 64.
    Groenen et.al., Thin Solid Films 392 (2001) 226–230.Google Scholar
  65. 65.
    Aghamalyan et.al., Semicond. Sci. Technol. 18 (2003) 525–529.Google Scholar
  66. 66.
    Ning et.al., Thin Solid Films 307, 50–53, 1997.Google Scholar
  67. 67.
    Sun et.al., Jour. Appl. Phys., Vol. 86, No. 1, P. 408–411, 1 July 1999.Google Scholar
  68. 68.
    Kim, Thin Solid Films, 377–378 (2000) 798–802Google Scholar
  69. 69.
    Dolbec et.al., Thin Solid Films 419 (2002) 230–236.Google Scholar
  70. 70.
    Matsubara et.al., Thin Solid Films 431–432, 369–372, 2003.Google Scholar
  71. 71.
    Vincze et.al., Appl. Surf. Sci. 255, 1419–1422, 2008.Google Scholar
  72. 72.
    Elam et.al., Chem. Mater. 15, 1020–1028, 2003.Google Scholar
  73. 73.
    Yang et.al., Thin Solid Films 326, 60–62, 1998.Google Scholar
  74. 74.
    Yoshino et.al., Vacuum 59, 403–410, 2000.Google Scholar
  75. 75.
    Zhang et.al., Appl. Surf. Sci. 158, 43–48, 2000.Google Scholar
  76. 76.
    Hao et.al., Appl. Surf. Sci. 183, 137–142, 2001.Google Scholar
  77. 77.
    Zhang et.al., Mat. Chem. Phys. 68, 233–238, 2001.Google Scholar
  78. 78.
    Durrani et.al., Thin Solid Films 379, 199–202, 2000.Google Scholar
  79. 79.
    Gunasekaran et.al., Phys. Stat. Sol. C3(8), 2656–2660, 2006.Google Scholar
  80. 80.
    Lin et.al., Ceramics Int 30, 497–501, 2004.Google Scholar
  81. 81.
    Chang et.al., Thin Solid Films 386, 79–86, 2001.Google Scholar
  82. 82.
    Igasaki et.al., Appl. Surf. Sci. 169–170, 508–511, 2001.Google Scholar
  83. 83.
    Song et.al., Appl. Surf. Sci. 195, 291–296, 2002.Google Scholar
  84. 84.
    Brehme et.al., Thin Solid Films 342, 167–173, 1999.Google Scholar
  85. 85.
    Addonizio et.al., Thin Solid Films 349, 93–99, 1999.Google Scholar
  86. 86.
    Look, Mat. Sci. Engine. B80, 383–387, 2001.Google Scholar
  87. 87.
    Feddern, Dissertation, Universität Hamburg, 2002.Google Scholar
  88. 88.
    Reuß, Untersuchung des Dotierverhaltens und der mag. Eigenschaften von epitaktischen ZnO-Heterostrukturen, Dissertation, Universität Ulm, 2005.Google Scholar
  89. 89.
    Wischmeier, ZnO-Nanodrähte: Optische Eigenschaften und Ladungsträger-dynamik, Dissertation, Universität Bremen, 2007.Google Scholar
  90. 90.
    Waugh, Catalysis Let. 58, 163–165, 1999.Google Scholar
  91. 91.
    Reitz et.al., J. Mol. Catalysis A, Chemical 162, 275–285, 2000.Google Scholar
  92. 92.
    Choi et.al., Appl. Catalysis A, General 208, 163–167, 2001.Google Scholar
  93. 93.
    Jeong et.al., Surf. Coat. Techno. 193, 340–344, 2005.Google Scholar
  94. 94.
    Cheong et.al., Thin Solid Films 410, 142–146, 2002.Google Scholar
  95. 95.
    Lorenz et.al., Sol. State El. 47, 2205–2209, 2003.Google Scholar
  96. 96.
    Lee et.al., Thin Solid Films 426, 94–99, 2003.Google Scholar
  97. 97.
    Minami et.al., Thin Solid Films 431–432, 369–372, 2003.Google Scholar
  98. 98.
    Tominaga et.al., Vacuum 66, 511–515, 2002.Google Scholar
  99. 99.
    Yamamoto et.al., Thin Solid Films 420–421, 100–106, 2002.Google Scholar
  100. 100.
    Wang et.al., Phys. Rev. Let. 90, 256401, 2003.Google Scholar
  101. 101.
    Grundmann et.al., MaterialsNews, 15.08.2006.Google Scholar
  102. 102.
    Pan et.al., J. El. Mat. 36 (4), 457–461, 2007.Google Scholar
  103. 103.
    Yang et.al., J. El. Mat. 36(4), 498–501, 2007.Google Scholar
  104. 104.
    Xue et.al., Chinese Phys. B17(6), 2240–2244,2008.Google Scholar
  105. 105.
    Grundmann et.al., http://www.uni-protokolle.de/nachrichten/text /146856, 2009.
  106. 106.
    Jin et.al. Physica B 404, 1097–1101, 2009.Google Scholar
  107. 107.
    Qiao et.al., Thin Solid Films 496, 520–525, 2006.Google Scholar
  108. 108.
    Lin et.al., Surf. Coatings Techno. 185, 254–263, 2004.Google Scholar
  109. 109.
    Oh et.al., J. Cryst. Growth 281, 475–480, 2005.Google Scholar
  110. 110.
    Kuo et.al., J. Cryst. Growth 287, 78–84, 2006.Google Scholar
  111. 111.
    Martínez et.al., Surface and Coatings Technology 110 (1998) 68–72.Google Scholar
  112. 112.
    Kluth et.al., Thin Solid Films 351 (1999) 247–253.Google Scholar
  113. 113.
    Klenk et.al., Session I II, FVS Workshop, 2005.Google Scholar
  114. 114.
    Maissel, Glang, Handbook of Thin-film Technology, McGraw Hill, NewYork, 1970.Google Scholar
  115. 115.
    Wasa, Hayakawa, Handbook of Sputter Deposition Technology, ISBN 0-8155-1280=5, Noyes Publications, NewJersey, 1992.Google Scholar
  116. 116.
    Wasa, Kitabatake, Adachi, Thin-Film Materials Technology – Sputtering of Compound Materials, Chap. 2, ISBN 3-540-21118-7, Springer-Verlag GmbH & Co. KG, 2004.Google Scholar
  117. 117.
    Depla, Mahieu, Reactive Sputter Deposition, Springer Series in Materials Science 109, ISBN 978-3-540-76662-9, Springer Berlin, Heidelberg, New York, 2008.Google Scholar
  118. 118.
    Chopra, Das, Thin Film Solar Cells, ISBN 0-306-41141-5, Plenum Press New York, 1983.Google Scholar
  119. 119.
    Stadler, Analysen für Chalkogenid-Dünnschicht-Solarzellen, Theorie und Experimente, ISBN 978-3-8348-0993-3, Vieweg + Teubner Wiesbaden, 1. Aufl., 2010.Google Scholar
  120. 120.
    Tüzemen et.al., Physica B, 308–310 (2001) 1197–1200.Google Scholar
  121. 121.
    Redlich, Kwong, Chem. Rev., Vol. 44, p. 233, 1949.Google Scholar
  122. 122.
    Soave, Chem. Eng. Sci. 27 (1972) 1197–1203.Google Scholar
  123. 123.
    Peng, Robinson, Ind. Eng. Chem. Fundam. 15(1), p. 59–64, 1976.MATHGoogle Scholar
  124. 124.
    Reid, Prausnitz, Poling: The Properties of Gases & Liquids, 4th Ed., McGraw-Hill, New York 1987Google Scholar
  125. 125.
    Berthelot, Annales de Chimie Physique, No. 4, p. 5, 1875.Google Scholar
  126. 126.
    Sokolov, Russian Physics Journal, DOI 10.1007BF 00890479, 1158–1159Google Scholar
  127. 127.
    Guillén et.al., Thin solid films 515 (2006) 640–643.Google Scholar
  128. 128.
    Nair et.al., Solar Energy Materials and Solar Cells 52, 313–344, 1998.Google Scholar
  129. 129.
    Khallaf et.al., Thin Solid Films, Accepted Manuscript, DOI 10.1016/j.tsf.2008.01. 004, 2008.Google Scholar
  130. 130.
    Tepantlán et.al., Rev. Mexicana de Física 54(2), 112–117, 2008.Google Scholar
  131. 131.
    Ghosh et.al., Materials Letters 60, 2881–2885, 2006.Google Scholar
  132. 132.
    Castro-Rodriquez et.al., J. Cryst. Growth 306, 249–253, 2007.Google Scholar
  133. 133.
    Schreder et.al., J. Cryst. Growth 214/215, 782–786, 2000.Google Scholar
  134. 134.
    Gordillo et.al., Superficies y Vacío 16(3), 30–33, 2003.Google Scholar
  135. 135.
    Gunasecaran et.al., Sol. Energy Mat. & Solar Cells 91, 774–778, 2007.Google Scholar
  136. 136.
    Böer, Phys. Stat. Sol. (a) 40, 355, 1977.Google Scholar
  137. 137.
    Van Hoecke, Burgelman et.al., 17th Phot. Volt. Special. Conference Proceedings, 890–895, 1984.Google Scholar
  138. 138.
    Liu et.al., Thin Solid Films 431–432, 477–482, 2003.Google Scholar
  139. 139.
    Pfisterer, Thin Solid Films 431–432, 470–476, 2003.Google Scholar
  140. 140.
    Demtsu et.al., Thin Solid Films 516, 2251–2254, 2008.Google Scholar
  141. 141.
    Ristova et.al., Sol. Energy Mat. and Sol. Cells 53, 95–102, 1998.Google Scholar
  142. 142.
    Lee et.al., J. Korean Phys. Soc., Vol. 40, No. 5, pp. 883–888, 2002.Google Scholar
  143. 143.
    Caballero et.al., J. Phys.: Condens. Matter 19 (2007) 356222 (11 pp).Google Scholar
  144. 144.
    Estela Calixto et.al., Study of chemical bath deposited CdS bi-layers and their performance in CdS/CdTe solar cell applications, Thin Solid Films xx (2007) xxx–xxx.Google Scholar
  145. 145.
    Nguyen Hong Quang, The Role of the Heterointerfaces in the Cu(In, Ga)Se2 Thin Film Solar Cell with Chemical Bath Deposited Buffer Layers, Dissertation, Universität Stuttgart, Inst. für phys. Chemie, 2004.Google Scholar
  146. 146.
    Roedern, Bauer, NREL/CP –520–26363, Apr. 1999.Google Scholar
  147. 147.
    Mazón-Montijo et.al., Appl. Surf. Sci. 254 (2007) 499–505.Google Scholar
  148. 148.
    Vigil-Galán et.al., Thin Solid Films 515 (2007) 6085–6088.Google Scholar
  149. 149.
    Liu et.al., Jour. of Colloid and Interf. Sci. 320 (2008) 540–547.Google Scholar
  150. 150.
    Khallaf et.al., Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources, Thin Solid Films xx (2008) xxx–xxx.Google Scholar
  151. 151.
    Hiie et.al., Thermal annealing effect on structural and electrical properties of chemical bath-deposited CdS films, Thin Solid Films xx (2007) xxx–xxx.Google Scholar
  152. 152.
    Bhattacharya et.al., Solar Energy 77 (2004) 679–683.Google Scholar
  153. 153.
    Hariskos et.al., Thin Solid Films 480–481 (2005) 99–109.Google Scholar
  154. 154.
    Trigo et.al., Solar Energy Mat. & Solar Cells 92 (2008) 1145–1148.Google Scholar
  155. 155.
    Nakada et.al., Solar Energy Mat. & Solar Cells 67 (2001) 255–260.Google Scholar
  156. 156.
    Wu et.al., NREL/CP-520-25656, Sep. 1998.Google Scholar
  157. 157.
    Asenjo et.al., Solar Energy Mat. & Solar Cells 92 (2008) 302–306.Google Scholar
  158. 158.
    Witte et.al., Phys. Stat. Sol. (RRL) 2, No. 2 (2008) 80–82.Google Scholar
  159. 159.
    Ahire et.al., Sens. and Actuat. A 140 (2007) 207–214.Google Scholar
  160. 160.
    Jayachandran et.al., J. Mat. Sci. Let. 20, 381–383, 2000.Google Scholar
  161. 161.
    Lopez et.al., Semicond. Sci. Technol. 9, 2130–2133, 1994.Google Scholar
  162. 162.
    Reddy et.al., Thin Solid Films 325, 4–6, 1998.Google Scholar
  163. 163.
    Reddy et.al., J. Phys. D, Appl. Phys. 32, 988–990, 1999.Google Scholar
  164. 164.
    Thangaraju et.al., J. Phys. D, Appl. Phys. 33, 1054–1059, 2000.Google Scholar
  165. 165.
    Reddy et.al., Physica B 368, 25–31, 2005.Google Scholar
  166. 166.
    Nair et.al., Semicond. Sci. Technol. 6, 132–134, 1991.Google Scholar
  167. 167.
    Nair et.al., J. Phys. D, Appl. Phys. 24, 83–87, 1991.Google Scholar
  168. 168.
    Nair et.al., J. Phys. D, Appl. Phys. 24, 450–453, 1991.Google Scholar
  169. 169.
    Ichimura et.al., Thin Solid Films 361–362, 98–101, 2000.Google Scholar
  170. 170.
    Ristov et.al., Sol. Energy Mat. & Sol. Cells 69, 17–24, 2001.Google Scholar
  171. 171.
    Takeuchi et.al., Sol. Energy Mat. and Sol. Cells 75(3), 427–432(6), 2003.Google Scholar
  172. 172.
    Tanuševski et.al., Semicond. Sci. Technol. 18(6) 501–505, 2003.Google Scholar
  173. 173.
    Johnson et.al., Semicond. Sci. Technol. 14, 501–507, 1999.Google Scholar
  174. 174.
    El-Nahass et.al., Opt. Mat. 20, 159–170, 2002.Google Scholar
  175. 175.
    Shama et.al., Opt. Mat. 24, 555–561, 2003.Google Scholar
  176. 176.
    Reddy et.al., Appl. Phys. A 83, 133–138, 2006.Google Scholar
  177. 177.
    Devika et.al., J. Phys.: Condens. Matter 19, 306003 (12 pp), 2007.Google Scholar
  178. 178.
    Ogah et.al., E-MRS Spring Strasbourg, IEEE, 2008.Google Scholar
  179. 179.
    Reddy et.al., Thin Solid Films 403–404, 116–119, 2002.Google Scholar
  180. 180.
    Guang-Pu et.al., 1st WCPEC Hawaii, IEEE, 1994.Google Scholar
  181. 181.
    Engelken et.al., J. Electrochem. Soc. 134(11), 2696–2707, 1987.Google Scholar
  182. 182.
    Price et.al., Chem. Vap. Depos. 4(6), 222–225, 1998.Google Scholar
  183. 183.
    Sanchez-Juarez et.al., Semicond. Sci. Technol. 17, 931–937, 2002.Google Scholar
  184. 184.
    Ghosh et.al., Appl. Surf. Sci. 254, 6436–6440, 2008.Google Scholar
  185. 185.
    Parentheau et.al., Phys. Rev. B 41, 5227–5234, 1990.Google Scholar
  186. 186.
    Ibarz et.al., Chem. Mater. 10, 3422–3428, 1998.Google Scholar
  187. 187.
    Avellaneda et.al., Thin Solid Films 515, 5771–5776, 2007.Google Scholar
  188. 188.
    Chamberlain et.al., J. Phys. C, Sol. State Phys. 9, 1976.Google Scholar
  189. 189.
    Chamberlain et.al., J. Phys. C, Sol. State Phys. 10, 1977.Google Scholar
  190. 190.
    Cifuentes et.al., Brazilian J. Phys. 36, 3B, 2006.Google Scholar
  191. 191.
    Devika et.al., Semicond. Sci. Technol. 21, 1495–1501, 2006.Google Scholar
  192. 192.
    Reddy et.al., Sol. Energy Mat. & Sol. Cells 90, 3041–3046, 2006.Google Scholar
  193. 193.
    Nassary et.al., J. Alloys Comp. 398, 21–25, 2005.Google Scholar
  194. 194.
    Șahin et.al., Appl. Surf. Sci. 242, 412–418, 2005.Google Scholar
  195. 195.
    Pütz, Diplomarbeit, Universität Saarbrücken, 1996.Google Scholar
  196. 196.
    Deraman et.al., Int. Jour. of Electr., Vol. 76 (1994) 917–922.Google Scholar
  197. 197.
  198. 198.
    Trueb, Die chemischen Elemente, Ein Streifzug durch das Periodensystem, ISBN 3-7776-0674-X, S. Hirzel Verlag, Stuttgart/Leipzig, 1996.Google Scholar
  199. 199.
    Henry, J. Appl. Phys., 51 (1980) 4494.Google Scholar
  200. 200.
    Prince, J. Appl. Phys., 26 (1955) 534.Google Scholar
  201. 201.
    Bahaa et.al., Grundlagen der Photonik, ISBN 978-3-527-40677-7, Wiley & Sons, 2007.Google Scholar
  202. 202.
    Würfel, Physik der Solarzellen, ISBN 3-8274-0598-X, Spektrum Akademischer Verlag GmbH Heidelberg/Berlin, 2000.Google Scholar
  203. 203.
    Reider, Photonik – Eine Einführung in die Grundlagen, ISBN 3-211-82855-9, Springer Verlag Wien/New York, 1997.Google Scholar
  204. 204.
    Sze, Physics of Semiconductor Devices, ISBN 0-471-05661-8, Wiley & Sons, 2nd Ed., 1981.Google Scholar
  205. 205.
    Sze, Ng, Physics of Semiconductor Devices, ISBN 0-471-14323-5, Wiley & Sons, 3rd Ed., 2007.Google Scholar
  206. 206.
    Sze, Modern Semiconductor Device Physics, ISBN 0-471-15237-4, Wiley & Sons, 1998.Google Scholar
  207. 207.
    Schroder, Semiconductor Material and Device Characterization, ISBN 0-471-73906-5, Wiley & Sons, 3rd Ed., 2006.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.MünchenDeutschland

Personalised recommendations