Advertisement

Strömungen mit mehreren Phasen

Chapter
  • 9.7k Downloads
Part of the Springer Reference Technik book series (SRT)

Weiterführende Literatur

  1. Archer, W.: Experimental determination of loss of heat due to sudden enlargement in circular pipes. Trans. Am. Soc. Civil Eng. 76, 999–1026 (1913)Google Scholar
  2. Arndt, R.E.A., Arakeri, V.H.: Some observations of tip-vortex cavitation. J. Fluid Mech. 229, 269–289 (1991)CrossRefGoogle Scholar
  3. Azzopardi, B.J., Hervieu, E.: Phase separation in T-junctions. Multiph. Sci. Technol. 8, 645–713 (1994)CrossRefGoogle Scholar
  4. Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries, Pt I. Rigid boundaries. J. Fluid Mech. 170, 479–497 (1986)CrossRefzbMATHGoogle Scholar
  5. Bolle, L., Moureau, J.C.: Spray colling of hot surfaces. Multiph. Sci. Technol. 1, 1–97 (1982)CrossRefGoogle Scholar
  6. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Univ. Press, Oxford (1995)zbMATHGoogle Scholar
  7. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1968)zbMATHGoogle Scholar
  8. Chen, Y., Heister, S.D.: A numerical treatment for attached cavitation. J. Fluids Eng. 116, 613–618 (1994)CrossRefGoogle Scholar
  9. Chexal, B., Merilo, M., Maulbetsch, J., Horowitz, J., Harrison, J., Westacott, J., Peterson, C., Kastner, W., Schmidt, H.: Void fraction technology for design and analysis. TR 106326, EPRI, Palo Alto (1997)Google Scholar
  10. Chisholm, D.: Pressure losses in bends and T’s during Steam-Water Flow. Report 318, N. E. L. (1967a)Google Scholar
  11. Chisholm, D.: A Theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transf. 10, 1767–1678 (1967b)CrossRefGoogle Scholar
  12. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic, New York (1978)/Dover Publications (2005)Google Scholar
  13. Collier, J.G., Thome, J.R.: Convective Boiling and Heat Transfer. Clarendon Press, Oxford (1994)Google Scholar
  14. Collins, R.: The effect of a containing cylindrical boundary on the velocity of a large gas bubble in a liquid. J. Fluid Mech. 28 (1), 97–112 (1967)CrossRefGoogle Scholar
  15. Coulaloglou, C.A., Tavlarides, L.L.: Description of interaction processes in activated liquid–liquid dispersions. Chem. Eng. Sci. 32, 1289–1297 (1977)CrossRefGoogle Scholar
  16. Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton/Boston/New York/London (1998)Google Scholar
  17. Delhaye, J., Giot, M., Riethmüller, M.: Thermodynamics of Two-Phase Systems for Industrial Design and Nuclear Engineering. Hemisphere Publishing, New York (1981)Google Scholar
  18. Duckworth, R.A.: Pressure gradient and velocity correlation and their application to design. Pneumotransport 1, 49–52 (1971)Google Scholar
  19. Dukler, A.E., Wicks III, M., Cleveland, R.G.: Frictional pressure drop in two-phase flow: B. An approach through similarity analysis. AIChE J. 10 (1), 44–51 (1964)Google Scholar
  20. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Progress 48, 89–94 (1952)Google Scholar
  21. Fauske, H.K.: Contribution to the theory of two-phase, one-component critical flow. Technical Report ANL-6633, Argonne National Laboratory (1963)Google Scholar
  22. Franc, J.-P., Michel, J.-M.: Attached cavitation and the boundary layer: experimental investigation and numerical treatment. J. Fluid Mech. 154, 63–90 (1985)CrossRefGoogle Scholar
  23. Franc, J.-P., Michel, J.-M.: Fundamentals of Cavitation. Kluwer, Dordrecht (2004)zbMATHGoogle Scholar
  24. Friedel, L.: Druckabfall bei der Strömung von Gas-Dampf-Flüssigkeitsgemischen in Rohren. Chem. Ing. Tech. 50 (3), 167–180 (1978)CrossRefGoogle Scholar
  25. Geldert, D.: Types of gas fluidization. Powder Technol. 7, 285–292 (1973)CrossRefGoogle Scholar
  26. Govier, G., Aziz, K.: The Flow of Complex Mixtures in Pipes. Reinhold Van Nostrand Co., New York (1972)Google Scholar
  27. Grace, J.R.: Fluidization. In: Hetsroni, G. (Hrsg.) Handbook of Multiphase Flow Systems, Hemisphere Publ., Washington, DC (1982)Google Scholar
  28. Grace, J.R., Taghipour, F.: Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol. 139 (2), 99–110 (2004)CrossRefGoogle Scholar
  29. Henry, H., Fauske, H.: Two-phase critical flow of one-component mixtures in nozzles, orifices and short tubes. Trans. ASME J. Heat Transf. 95, 179–187 (1971)CrossRefGoogle Scholar
  30. Henry, R., Grolmes, M., Fauske, H.: Pressure-pulse propagation in two-phase one- and two-component mixtures. Technical Report ANL-7792, Argonne National Laboratory (1971)Google Scholar
  31. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1987)Google Scholar
  32. Idsinga, W., Todreas, N., Bowring, R.: An assessment of two-phase pressure drop correlations for steam-water systems. Int. J. Multiph. Flow 3, 401–413 (1977)CrossRefGoogle Scholar
  33. Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975)zbMATHGoogle Scholar
  34. Ishii, M.: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Technical Report ANL-7747, Argonne National Laboratory, Lemont (1977)Google Scholar
  35. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New York (2008)zbMATHGoogle Scholar
  36. Ishii, M., Mishima, K.: Two-fluid model and hydrodynamic constitutive relations. Nucl. Eng. Des. 82 (2–3), 107–126 (1984)CrossRefGoogle Scholar
  37. Jakobsen, H.A., Lindborg, H., Dorao, C.A.: Modeling of bubble column reactors: progress and limitations. Ind. Eng. Chem. Res. 44, 5107–5151 (2005)CrossRefGoogle Scholar
  38. Kocamustafaogullari, H.A., Ishii, M.: Foundation of the interfacial area transport equation and its closure relations. Int. J. Heat Mass Transf. 38 (3), 481–493 (1995)CrossRefzbMATHGoogle Scholar
  39. Kunii, D., Levenspiel, O.: Fluidization Engineering. Butterworth-Heinemann, Boston (1991)Google Scholar
  40. Lauterborn, W., Bolle, H.: Experimental investigation of cavitation bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391–399 (1975)CrossRefGoogle Scholar
  41. Lecoffre, Y.: Cavitation: Bubble Trackers. Balkema, Rotterdam, Brookfield (1999)Google Scholar
  42. Ledinegg, M.: Instabilität der Strömung bei natürlichem und Zwangsumlauf. Wärme 61, 891–908 (1938)Google Scholar
  43. Lin, S.P., Reitz, R.D.: Drop and spray formation from a liquid jet. Ann. Rev. Fluid Mech. 30, 85–105 (1998)MathSciNetCrossRefGoogle Scholar
  44. Lockhart, R., Martinelli, R.: Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem. Eng. Prog. 45, 39–48 (1949)Google Scholar
  45. Lottes, P.A.: Expansion losses in two-phase flow. Nucl. Sci. Eng. 9, 26–31 (1961)Google Scholar
  46. Mandhane, J.M., Gregory, G.A., Aziz, K.: A flow pattern map for gas–liquid flow in horizontal pipes. Int. J. Multiph. Flow 1, 537–553 (1974)CrossRefGoogle Scholar
  47. Martinelli, R., Nelson, D.: Prediction of pressure drop during forced circulation boiling of water. Trans. ASME 79, 695–702 (1948)Google Scholar
  48. Molerus, O.: Fluid-Feststoff-Strömungen. Springer, Berlin/Heidelberg/New York (1982)CrossRefzbMATHGoogle Scholar
  49. Moody, F.J.: Maximum flow rate of a single-component, two-phase mixture. ASME J. Heat Transf. 86, 134–142 (1965)CrossRefGoogle Scholar
  50. von Ohnesorge, W.: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. ZAMM 16 (6), 355–358 (1936)CrossRefGoogle Scholar
  51. Ozawa, M.: Flow instability problems in steam-generating tubes. In: Ishigai, S. (Hrsg.) Steam Power Engineering. Cambridge University Press, Cambridge (1999)Google Scholar
  52. Peebles, F.N., Garber, H.J.: Studies on the motion of gas bubbles in liquids. Chem. Eng. Progress 49, 88–97 (1953)Google Scholar
  53. Phillipp, A., Lauterborn, W.: Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)CrossRefzbMATHGoogle Scholar
  54. Pilch, M., Erdman, C.A.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13, 714–757 (1987)CrossRefGoogle Scholar
  55. Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1971)CrossRefGoogle Scholar
  56. Premoli, A., Francesco, D., Prino, A.: An empirical correlation for evaluating two-phase mixture density under adiabatic conditions. European Two-Phase Flow Group Meeting, Milan (1970)Google Scholar
  57. Qian, J., Law, C.R.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)CrossRefGoogle Scholar
  58. Richardson, B.: Some problems in horizontal two-phase two-component flow. Technical Report ANL-5949, Argonne National Laboratory (1958)Google Scholar
  59. Risso, F., Fabre, J.: Oscillations and break up of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323–355 (1998)CrossRefzbMATHGoogle Scholar
  60. Sauer, J., Schnerr, G.H.: Development of a new cavitation model based on bubble dynamics. ZAMM 80, 731–732 (2000)zbMATHGoogle Scholar
  61. Shyy, W., Udaykumar, H.S., Rao, M.M., Smith, R.W.: Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis, Washington, DC/London (1996)zbMATHGoogle Scholar
  62. Taitel, Y., Bornea, D., Dukler, A.E.: Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 26, 345–354 (1980)CrossRefGoogle Scholar
  63. Taitel, Y., Dukler, A.: A model for prediction of flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 22, 47–55 (1976)CrossRefGoogle Scholar
  64. Taitel, Y.: Flow pattern transition in two-phase flow. In: Proceedings of the 9th International Heat Transfer Conference, Jerusalem, S. 237–254 (1990)Google Scholar
  65. Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulations of gas-Liquid Multiphase Flows. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  66. Tsouris, C., Tavlarides, L.L.: Breakage and coalescence models for drops in turbulent dispersions. AIChE J. 40, 395–406 (1994)CrossRefGoogle Scholar
  67. Velasco, L.: L’écoulement Biphasique à Travers un Elargissement Brusque. Ph.D. thesis, Université Catholique de Louvain, Dép. Thermodyn. et Turbomach. (1975)Google Scholar
  68. Wallis, G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill (1969)Google Scholar
  69. Wallis, G.B.: Critical two-phase flow. Int. J. Multiphase Flow 6, 97–112 (1980)CrossRefGoogle Scholar
  70. Weber, M.: Strömungsfördertechnik. Krauskopf, Mainz (1974)Google Scholar
  71. Weismann, J., Husain, A., Harshe, B.: Two-phase pressure drop across area changes and restrictions. Two-Phase Transp. React. Saf. 4, 1281–1316 (1976)Google Scholar
  72. Whalley, P.B.: Data Bank for Pressure Loss Correlations, a Comparative Study. Unveröffentlicht, zitiert in Short Courses on Modelling and Computation of Multiphase Flows, ETH Zürich (1999)Google Scholar
  73. Yadigaroglou, G.: Two-phase flow instabilities and propagation phenomena. In: Delhaye, J.M., Giot, M., Riethmüller, M.L. (Hrsg.) Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, S. 353–403. Hemishpere Publishing, Washington, DC (1981)Google Scholar
  74. Yadigaroglou, G.: Short Courses on Modelling and Computation of Multiphase flows. Swiss Federal Institute of Technology, ETH, Zürich (2006–2012).Google Scholar
  75. Yadigaroglou, G., Lahey, J.R.T.: On the various forms of the conservation equations in two-phase flow. Int. J. Multiphase Flow 2, 477–494 (1976)CrossRefzbMATHGoogle Scholar
  76. Zuber, H., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Transf. 87, 453–468 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.KarlsruheDeutschland

Personalised recommendations