Skip to main content

Strömungen mit mehreren Phasen

  • Chapter
  • First Online:
  • 13k Accesses

Part of the book series: Springer Reference Technik ((SRT))

Zusammenfassung

Das Kapitel Strömungen mit mehreren Phasen ist Teil des Lehrbuches und Nachschlagewerkes H. Oertel jr. (Hrsg.) Prandtl-Führer durch die Strömungslehre. Es werden die Grundlagen der Mehrphasenströmungen mit den unterschiedlichen Strömungsformen und Strömungskarten der horizontalen und vertikalen Rohrströmungen bereitgestellt sowie vereinfachte Strömungsmodelle der Zweiphasenströmung, wie das Zwei-Fluid Modell, die Mischungsmodelle und das Driftströmungsmodell behandelt. Das Kapitel gibt einen Einblick in Strömungen mit Blasen und Tropfen, Sprühströmungen, den Flüssig-Feststoff Transport, Dichtewellen und Kavitation sowie den Druckverlust in Hydraulikkomponenten und Instabilitäten in Zweiphasenströmungen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Weiterführende Literatur

  • Archer, W.: Experimental determination of loss of heat due to sudden enlargement in circular pipes. Trans. Am. Soc. Civil Eng. 76, 999–1026 (1913)

    Google Scholar 

  • Arndt, R.E.A., Arakeri, V.H.: Some observations of tip-vortex cavitation. J. Fluid Mech. 229, 269–289 (1991)

    Article  Google Scholar 

  • Azzopardi, B.J., Hervieu, E.: Phase separation in T-junctions. Multiph. Sci. Technol. 8, 645–713 (1994)

    Article  Google Scholar 

  • Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries, Pt I. Rigid boundaries. J. Fluid Mech. 170, 479–497 (1986)

    Article  MATH  Google Scholar 

  • Bolle, L., Moureau, J.C.: Spray colling of hot surfaces. Multiph. Sci. Technol. 1, 1–97 (1982)

    Article  Google Scholar 

  • Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Univ. Press, Oxford (1995)

    MATH  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1968)

    MATH  Google Scholar 

  • Chen, Y., Heister, S.D.: A numerical treatment for attached cavitation. J. Fluids Eng. 116, 613–618 (1994)

    Article  Google Scholar 

  • Chexal, B., Merilo, M., Maulbetsch, J., Horowitz, J., Harrison, J., Westacott, J., Peterson, C., Kastner, W., Schmidt, H.: Void fraction technology for design and analysis. TR 106326, EPRI, Palo Alto (1997)

    Google Scholar 

  • Chisholm, D.: Pressure losses in bends and T’s during Steam-Water Flow. Report 318, N. E. L. (1967a)

    Google Scholar 

  • Chisholm, D.: A Theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transf. 10, 1767–1678 (1967b)

    Article  Google Scholar 

  • Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic, New York (1978)/Dover Publications (2005)

    Google Scholar 

  • Collier, J.G., Thome, J.R.: Convective Boiling and Heat Transfer. Clarendon Press, Oxford (1994)

    Google Scholar 

  • Collins, R.: The effect of a containing cylindrical boundary on the velocity of a large gas bubble in a liquid. J. Fluid Mech. 28 (1), 97–112 (1967)

    Article  Google Scholar 

  • Coulaloglou, C.A., Tavlarides, L.L.: Description of interaction processes in activated liquid–liquid dispersions. Chem. Eng. Sci. 32, 1289–1297 (1977)

    Article  Google Scholar 

  • Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton/Boston/New York/London (1998)

    Google Scholar 

  • Delhaye, J., Giot, M., Riethmüller, M.: Thermodynamics of Two-Phase Systems for Industrial Design and Nuclear Engineering. Hemisphere Publishing, New York (1981)

    Google Scholar 

  • Duckworth, R.A.: Pressure gradient and velocity correlation and their application to design. Pneumotransport 1, 49–52 (1971)

    Google Scholar 

  • Dukler, A.E., Wicks III, M., Cleveland, R.G.: Frictional pressure drop in two-phase flow: B. An approach through similarity analysis. AIChE J. 10 (1), 44–51 (1964)

    Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Progress 48, 89–94 (1952)

    Google Scholar 

  • Fauske, H.K.: Contribution to the theory of two-phase, one-component critical flow. Technical Report ANL-6633, Argonne National Laboratory (1963)

    Google Scholar 

  • Franc, J.-P., Michel, J.-M.: Attached cavitation and the boundary layer: experimental investigation and numerical treatment. J. Fluid Mech. 154, 63–90 (1985)

    Article  Google Scholar 

  • Franc, J.-P., Michel, J.-M.: Fundamentals of Cavitation. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  • Friedel, L.: Druckabfall bei der Strömung von Gas-Dampf-Flüssigkeitsgemischen in Rohren. Chem. Ing. Tech. 50 (3), 167–180 (1978)

    Article  Google Scholar 

  • Geldert, D.: Types of gas fluidization. Powder Technol. 7, 285–292 (1973)

    Article  Google Scholar 

  • Govier, G., Aziz, K.: The Flow of Complex Mixtures in Pipes. Reinhold Van Nostrand Co., New York (1972)

    Google Scholar 

  • Grace, J.R.: Fluidization. In: Hetsroni, G. (Hrsg.) Handbook of Multiphase Flow Systems, Hemisphere Publ., Washington, DC (1982)

    Google Scholar 

  • Grace, J.R., Taghipour, F.: Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol. 139 (2), 99–110 (2004)

    Article  Google Scholar 

  • Henry, H., Fauske, H.: Two-phase critical flow of one-component mixtures in nozzles, orifices and short tubes. Trans. ASME J. Heat Transf. 95, 179–187 (1971)

    Article  Google Scholar 

  • Henry, R., Grolmes, M., Fauske, H.: Pressure-pulse propagation in two-phase one- and two-component mixtures. Technical Report ANL-7792, Argonne National Laboratory (1971)

    Google Scholar 

  • Hinze, J.O.: Turbulence. McGraw-Hill, New York (1987)

    Google Scholar 

  • Idsinga, W., Todreas, N., Bowring, R.: An assessment of two-phase pressure drop correlations for steam-water systems. Int. J. Multiph. Flow 3, 401–413 (1977)

    Article  Google Scholar 

  • Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975)

    MATH  Google Scholar 

  • Ishii, M.: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Technical Report ANL-7747, Argonne National Laboratory, Lemont (1977)

    Google Scholar 

  • Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New York (2008)

    MATH  Google Scholar 

  • Ishii, M., Mishima, K.: Two-fluid model and hydrodynamic constitutive relations. Nucl. Eng. Des. 82 (2–3), 107–126 (1984)

    Article  Google Scholar 

  • Jakobsen, H.A., Lindborg, H., Dorao, C.A.: Modeling of bubble column reactors: progress and limitations. Ind. Eng. Chem. Res. 44, 5107–5151 (2005)

    Article  Google Scholar 

  • Kocamustafaogullari, H.A., Ishii, M.: Foundation of the interfacial area transport equation and its closure relations. Int. J. Heat Mass Transf. 38 (3), 481–493 (1995)

    Article  MATH  Google Scholar 

  • Kunii, D., Levenspiel, O.: Fluidization Engineering. Butterworth-Heinemann, Boston (1991)

    Google Scholar 

  • Lauterborn, W., Bolle, H.: Experimental investigation of cavitation bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391–399 (1975)

    Article  Google Scholar 

  • Lecoffre, Y.: Cavitation: Bubble Trackers. Balkema, Rotterdam, Brookfield (1999)

    Google Scholar 

  • Ledinegg, M.: Instabilität der Strömung bei natürlichem und Zwangsumlauf. Wärme 61, 891–908 (1938)

    Google Scholar 

  • Lin, S.P., Reitz, R.D.: Drop and spray formation from a liquid jet. Ann. Rev. Fluid Mech. 30, 85–105 (1998)

    Article  MathSciNet  Google Scholar 

  • Lockhart, R., Martinelli, R.: Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem. Eng. Prog. 45, 39–48 (1949)

    Google Scholar 

  • Lottes, P.A.: Expansion losses in two-phase flow. Nucl. Sci. Eng. 9, 26–31 (1961)

    Google Scholar 

  • Mandhane, J.M., Gregory, G.A., Aziz, K.: A flow pattern map for gas–liquid flow in horizontal pipes. Int. J. Multiph. Flow 1, 537–553 (1974)

    Article  Google Scholar 

  • Martinelli, R., Nelson, D.: Prediction of pressure drop during forced circulation boiling of water. Trans. ASME 79, 695–702 (1948)

    Google Scholar 

  • Molerus, O.: Fluid-Feststoff-Strömungen. Springer, Berlin/Heidelberg/New York (1982)

    Book  MATH  Google Scholar 

  • Moody, F.J.: Maximum flow rate of a single-component, two-phase mixture. ASME J. Heat Transf. 86, 134–142 (1965)

    Article  Google Scholar 

  • von Ohnesorge, W.: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. ZAMM 16 (6), 355–358 (1936)

    Article  Google Scholar 

  • Ozawa, M.: Flow instability problems in steam-generating tubes. In: Ishigai, S. (Hrsg.) Steam Power Engineering. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Peebles, F.N., Garber, H.J.: Studies on the motion of gas bubbles in liquids. Chem. Eng. Progress 49, 88–97 (1953)

    Google Scholar 

  • Phillipp, A., Lauterborn, W.: Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)

    Article  MATH  Google Scholar 

  • Pilch, M., Erdman, C.A.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13, 714–757 (1987)

    Article  Google Scholar 

  • Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1971)

    Article  Google Scholar 

  • Premoli, A., Francesco, D., Prino, A.: An empirical correlation for evaluating two-phase mixture density under adiabatic conditions. European Two-Phase Flow Group Meeting, Milan (1970)

    Google Scholar 

  • Qian, J., Law, C.R.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)

    Article  Google Scholar 

  • Richardson, B.: Some problems in horizontal two-phase two-component flow. Technical Report ANL-5949, Argonne National Laboratory (1958)

    Google Scholar 

  • Risso, F., Fabre, J.: Oscillations and break up of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323–355 (1998)

    Article  MATH  Google Scholar 

  • Sauer, J., Schnerr, G.H.: Development of a new cavitation model based on bubble dynamics. ZAMM 80, 731–732 (2000)

    MATH  Google Scholar 

  • Shyy, W., Udaykumar, H.S., Rao, M.M., Smith, R.W.: Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis, Washington, DC/London (1996)

    MATH  Google Scholar 

  • Taitel, Y., Bornea, D., Dukler, A.E.: Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 26, 345–354 (1980)

    Article  Google Scholar 

  • Taitel, Y., Dukler, A.: A model for prediction of flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 22, 47–55 (1976)

    Article  Google Scholar 

  • Taitel, Y.: Flow pattern transition in two-phase flow. In: Proceedings of the 9th International Heat Transfer Conference, Jerusalem, S. 237–254 (1990)

    Google Scholar 

  • Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulations of gas-Liquid Multiphase Flows. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  • Tsouris, C., Tavlarides, L.L.: Breakage and coalescence models for drops in turbulent dispersions. AIChE J. 40, 395–406 (1994)

    Article  Google Scholar 

  • Velasco, L.: L’écoulement Biphasique à Travers un Elargissement Brusque. Ph.D. thesis, Université Catholique de Louvain, Dép. Thermodyn. et Turbomach. (1975)

    Google Scholar 

  • Wallis, G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill (1969)

    Google Scholar 

  • Wallis, G.B.: Critical two-phase flow. Int. J. Multiphase Flow 6, 97–112 (1980)

    Article  Google Scholar 

  • Weber, M.: Strömungsfördertechnik. Krauskopf, Mainz (1974)

    Google Scholar 

  • Weismann, J., Husain, A., Harshe, B.: Two-phase pressure drop across area changes and restrictions. Two-Phase Transp. React. Saf. 4, 1281–1316 (1976)

    Google Scholar 

  • Whalley, P.B.: Data Bank for Pressure Loss Correlations, a Comparative Study. Unveröffentlicht, zitiert in Short Courses on Modelling and Computation of Multiphase Flows, ETH Zürich (1999)

    Google Scholar 

  • Yadigaroglou, G.: Two-phase flow instabilities and propagation phenomena. In: Delhaye, J.M., Giot, M., Riethmüller, M.L. (Hrsg.) Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, S. 353–403. Hemishpere Publishing, Washington, DC (1981)

    Google Scholar 

  • Yadigaroglou, G.: Short Courses on Modelling and Computation of Multiphase flows. Swiss Federal Institute of Technology, ETH, Zürich (2006–2012).

    Google Scholar 

  • Yadigaroglou, G., Lahey, J.R.T.: On the various forms of the conservation equations in two-phase flow. Int. J. Multiphase Flow 2, 477–494 (1976)

    Article  MATH  Google Scholar 

  • Zuber, H., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Transf. 87, 453–468 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Müller, U. (2017). Strömungen mit mehreren Phasen. In: Oertel jr., H. (eds) Prandtl - Führer durch die Strömungslehre. Springer Reference Technik . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-08627-5_9

Download citation

Publish with us

Policies and ethics