Skip to main content

Fluoroamino Acids and Microorganisms

  • Chapter
Book cover Pharmacology of Fluorides

Abstract

Fluoroamino acids are among the most widely used analogues of naturally occurring compounds for biochemical and physiological research. Their molecular dimensions are approximately the same as those of the natural analogues because the van der Waals radius of the fluorine atom is only slightly larger than that of hydrogen (1.35 Å versus 1.20 Å) for which it is normally substituted. However, the electronegativity of fluorine is greater than that of hydrogen (4.0 versus 2.1), and so the C-F bond has more of an ionic character than the C-H bond with a higher bond energy of 105.4 kcal per mole compared with 98.8 kcal per mole (Pauling, 1960). Moreover, substitution of fluorine for hydrogen in organic compounds tends to enhance their hydrophilic properties. Despite these differences, fluoroamino acids can compete successfully with naturally occurring amino acids in many biochemical reactions, especially those reactions which do not lead to cleavage of the C-F bond. For example, the fluoroamino acid p-fluorophenylalanine (PFPA) can even be incorporated into proteins in place of phenylalanine. Enzymes usually discriminate against fluorosubstituted amino acids, but there are a few examples of enhanced reactivity due to substitution.

1. While this review was being written, the author’s work was supported in part by research grants R01 AM-08990 from the United States Public Health Service and GB-6573 from the U.S. National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelberg, E. A.: Selection of bacterial mutants which excrete antagonists of antimetabolites. J. Bact. 76, 326 (1958)

    PubMed  CAS  Google Scholar 

  • Ames, G.F.: Uptake of amino acids by Salmonella typhimurium. Arch. Bioehem. Biophys. 104, 1–18 (1964)

    CAS  Google Scholar 

  • Atkinson, D.E., Melvtn, S., Fox, S.W.: Effects of p-fluorophenylalanine on the growth of Lactobacillus arabinosus. Arch. Bioehem. Biophys. 31, 205–211 (1951)

    CAS  Google Scholar 

  • Baker, U.S., Jobnson, J.E., Fox, S.W.: Incorporation of p-fluorophenylalanine into proteins of Lactobacillus arabinosus. Biochim. biophys. Acta (Amst.) 28, 318–327 (1958)

    CAS  Google Scholar 

  • Baltimore, D., Franklin, R.M., Callender, J.: Mengovirus-induced inhibition of host ribonucleic acid and protein synthesis. Biochim. biophys. Acta (Amst.) 76,425–430 (1963)

    CAS  Google Scholar 

  • Bowman, W.H., Mallette, M.F.: Catabolism of p-fluorophenylalanine by Escherichia coli. Arch. Bioehem. Biophys. 117, 563–572 (1966)

    CAS  Google Scholar 

  • Bowman, W.H., Palmer, I. S., Clagett, C. O., Mallette, M.F.: Effects of p-fluorophenylalanine on lactose-indueed-β-galactosidase synthesis in resting-cell suspensions of Escherichia coli. Arch. Bioehem. Biophys. 108, 314–322 (1964)

    CAS  Google Scholar 

  • Brostrom, M.A., Binkley, S.B.: Membrane alteration and the formation of metachromatic granules in Escherichia coli treated with p-fluorophenylalanine. J. Bact. 98, 1263–1270 (1969a)

    PubMed  CAS  Google Scholar 

  • Brostrom, M.A., Binkley, S.B. Synchronous growth of Escherichia coli after treatment with fluorophenylalanine. J. Bact. 98, 1271–1273 (1969b)

    PubMed  CAS  Google Scholar 

  • Buchan, A., Burke, D.C.: Interferon production in chick-embryo cells. The effect of puro-mycin and p-fluorophenylalanine. Bioehem. J. 98, 530–536 (1966)

    CAS  Google Scholar 

  • Carpenter, C, Binkley, S.B.: Effect of p-fluorophenylalanine on chromosome replication in Escherichia coli. J. Bact. 96, 939–949 (1968)

    PubMed  CAS  Google Scholar 

  • Chantrenne, H., Courtois, C.: Formation de catalase induite par l’oxygene chez la levure. Biochim. biophys. Acta (Amst.) 14, 397–400 (1954)

    CAS  Google Scholar 

  • Cohen, G.N., Adelberg, E.A.: Kinetics of incorporation of p-fluorophenylalanine by a mutant of Escherichia coli resistant to this analogue. J. Bact. 76, 328–330 (1958)

    PubMed  CAS  Google Scholar 

  • Cohen, G.N., Halvorson, H.O., Spiegelman, S.: Effects of p-fluorophenylalanine on the growth and physiology of yeast. In R.B. Roberts (ed.), Microsomal Particles and Protein Synthesis, pp. 100–108. Oxford: Pergamon Press 1958

    Google Scholar 

  • Cohen, G.N., Monod, J.: Bacterial permeases. Bact. Rev. 21, 169–194 (1957)

    PubMed  CAS  Google Scholar 

  • Cohen, G.N., Munier, R.: Effects des analogues structuraux d’amino acides sur la croissance, la synthèse de protéines et la synthèse d’enzymes chez Escherichia coli. Biochim. biophys. Acta (Amst.) 31, 347–356 (1959)

    CAS  Google Scholar 

  • Cohen, G.N., Rickenberg, H.V.: Concentration spècifique réversible des amino acides chez Escherichia coli. Ann. Inst. Pasteur 91, 693–720 (1956)

    CAS  Google Scholar 

  • Coleman, G., Elliott, W.H.: Studies on a-amylase formation by Bacillus subtilis. Bioehem. J. 83, 256–263 (1962)

    CAS  Google Scholar 

  • Conway, T.W., Lansford, E.M., Jr., Shive, W.: Purification and substrate specificity of a phenylalanine activating enzyme from Escherichia coli 9723. J. biol. Chem. 237, 2850–2854 (1962)

    PubMed  CAS  Google Scholar 

  • Conway, T.W., Lansford, E.M., Jr., Shive, W. Influence of phenylalanine analogues upon bacterial accumulation and incorporation of phenylalanine. J. Bact. 85, 141–149 (1963)

    PubMed  CAS  Google Scholar 

  • Conway, T.W., Lansford, E.M., Jr., Shive, W. Inhibition of bacterial phenylalanine utilization and activation. Arch. Bioehem. Biophys. 107, 120–125 (1964)

    CAS  Google Scholar 

  • Cowie, D.B., Cohen, G.N., Bolton, E.T., DeRobichon-Szulmajster, H.: Amino acid analog incorporation into bacterial proteins. Biochim. biophys. Acta (Amst.) 34, 39–46 (1959)

    CAS  Google Scholar 

  • Dickie, N., Dennis, D.A., Thatcher, F.S.: Effect of p-fluorophenylalanine on radiation sensitivity in Escherichia coli. Canad. J. Microbiol. 14, 799–803 (1968)

    CAS  Google Scholar 

  • Dunn, T.F., Leach, F.R.: Incorporation of p-fluorophenylalanine into proteins by a cell-free system. J. biol. Chem. 242, 2693–2699 (1967)

    PubMed  CAS  Google Scholar 

  • Emeis, C. C.: Haploidisierung von diploiden Hefen durch p-Fluorophenylalanin. Z. Naturforsch. 21b, 816–817 (1966)

    Google Scholar 

  • Ezekiel, D.H.: Accumulation of ribonucleic acid in bacterial nuclear preparations during treatment of whole cells with 8-azaguanine, tetracyclines, and other inhibitors. J. Bact. 87, 755–760 (1964)

    PubMed  CAS  Google Scholar 

  • Ezekiel, D.H. Requirement for p-fluorophenylalanine activation in control of ribonucleic acid synthesis. Biochim. biophys. Acta (Amst.) 95, 48–53 (1965)

    CAS  Google Scholar 

  • Fangman, W.L., Nass, G., Neidhardt, F.C.: Immunological and chemical studies of phenyl-alanyl sRNA synthetase from Escherichia coli. J. molec. Biol. 13, 202–219 (1965)

    PubMed  CAS  Google Scholar 

  • Ezekiel, D.H., Neidhardt, F. C.: Protein and ribonucleic acid synthesis in a mutant of Escherichia coli with an altered aminoacyl ribonucleic acid synthetase. J. biol. Chem. 239, 1844–1847 (1964a)

    Google Scholar 

  • Fangman, W.L., Nass, G., Demonstration of an altered aminoacyl ribonucleic acid synthetase in a mutant of Escherichia coli. J. biol. Chem. 239, 1839–1843 (1964b)

    PubMed  CAS  Google Scholar 

  • Fenster, E.D., Anker, H.S.: Incorporation into polypeptide and charging on transfer ribonucleic acid of the amino acid analog 5’, 5’, 5’-trifluoroleucine by leucine auxotrophs of Escherichia coli. Biochemistry 8, 269–274 (1969)

    PubMed  CAS  Google Scholar 

  • Finch, L.R.: Adaption to amino acid-analogues. J. molec. Biol. 14, 591–592 (1965)

    PubMed  CAS  Google Scholar 

  • Fleming, R.W., Williams, F.D., Wailes, K.A.: Effects of p-fluorophenylalanine and chloramphenicol on chemotaxis in Escherichia coli. J. Bact. 94, 855–859 (1967)

    PubMed  CAS  Google Scholar 

  • Fowden, L., Lewis, D., Tristram, H.: Toxic amino acids: their action as antimetabolites. Advanc. Enzymol. 29, 89–163 (1967)

    CAS  Google Scholar 

  • Freundlich, M., Trela, J.M.: Control of isoleucine, valine and leucine biosynthesis. VI. Effect of 5’, 5’, 5’-trifluoroleucine on repression in Salmonella typhimurium. J. Bact. 99, 101–106 (1969)

    PubMed  CAS  Google Scholar 

  • Friedman, R.M., Sonnabend, J. A.: Inhibition of interferon action by p-fluorophenylalanine. Nature (Lond.) 203, 366–367 (1964)

    CAS  Google Scholar 

  • Gros, F., Gros, F.: Rôle des acides amines dans la synthèse des acides nucleique chez Escherichia coli. Exp. Cell Res. 14, 104–131 (1958)

    PubMed  CAS  Google Scholar 

  • Gutz, H.: Induction of mitotic segregation with p-fluorophenylalanine in Schizosaccharomyces pombe. J. Bact. 92, 1567–1568 (1966)

    PubMed  CAS  Google Scholar 

  • Halvorson, H.O., Cohen, G.N.: Incorporation des amino-acides endogenes et exogènes dans les protéines de la levure. Ann. Inst. Pasteur 95, 73–87 (1958)

    CAS  Google Scholar 

  • Halvorson, H.O., Spiegelman, S.: The inhibition of enzyme formation by amino acid analogues. J. Bact. 64, 207–221 (1952)

    PubMed  CAS  Google Scholar 

  • Hardwick, W.A., Foster, J.W.: On the nature of sporogenesis in some aerobic bacteria. J. gen. Physiol. 35, 907–927 (1951–52)

    Google Scholar 

  • Hardy, C, Binkley, S.B.: The effect of p-fluorophenylalanine on nucleic acid biosynthesis and cell division in Escherichia coli. Biochemistry 6, 1892–1898 (1967)

    PubMed  CAS  Google Scholar 

  • Horowitz, N.H., Fling, M., Macleod, H., Watanabe, Y.: Structural and regulative genes controlling tyrosinase synthesis in Neurospora. Cold Spr. Harb. Symp. quant. Biol. XXVI, 233–238 (1961)

    Google Scholar 

  • Hummeler, K., Weoker, E.: Influence of p-fluorophenylalanine on poliovirus particles. Virology 24, 456–460 (1964)

    PubMed  Google Scholar 

  • Ikeda, K.: Inhibition of pyocin R formation by fluorophenylalanine. J. Biochem. (Tokyo) 61, 615–622(1967)

    CAS  Google Scholar 

  • Ikeda, K., Egami, F.: Effects of antibiotics and antimetabolites on the induced formation of pyocin R. Z. aUg. Mikrobiol. 6, 219–225 (1966)

    CAS  Google Scholar 

  • Jeantet, C, Gomes, R.A., Monier, R.: Effet de la p-fluorophenylalanine sur la formation des ribosomes chez Escherichia coli. Bull. Soc. Chim. biol. (Paris) 50, 473–489 (1968)

    CAS  Google Scholar 

  • Joklik, W. K.: The multiplication of poxvirus DNA. Cold Spr. Harb. Symp. quant. Biol. XXVII, 199–208 (1962)

    Google Scholar 

  • Kang, S., Markovitz, A.: Depression of alkaline phosphatase in Escherichia coli by p-fluoro phenylalanine. J. Bact. 94, 87–91 (1967a)

    PubMed  CAS  Google Scholar 

  • Kang, S., Markovitz, A. Induction of capsular polysaccharide synthesis by p-fluorophenylalanine in Escherichia coli wild type and strains with altered phenylalanyl soluble ribonucleic acid synthetase. J. Bact. 93, 584–591 (1967b)

    PubMed  CAS  Google Scholar 

  • Kang, S., Rockey, P., Markovitz, A.: Derepression of β-galaetosidase synthesis in Escherichia coli K-12 by p-fluorophenylalanine. J. Bact. 96, 139–145 (1968)

    PubMed  CAS  Google Scholar 

  • Kaplan, J. G.: The effect of inhibitors on the induction of cryptic and patent yeast catalase. Enzymologia 25, 359–366 (1962)

    Google Scholar 

  • Katterman, R., Slonimski, P.P.: Differential effect of structural analogues of amino acids on the formation of respiratory enzymes induced by oxygen. C. R. Acad. Sci. (Paris) 250, 220–221 (1960)

    Google Scholar 

  • Kempner, E.S., Cowie, D.B.: Metabolic pools and the utilization of amino acid analogs for protein synthesis. Biochim. biophys. Acta (Amst.) 42, 401–408 (1960)

    CAS  Google Scholar 

  • Kepes, A.: Sequential transcription and translation in the lactose operon of Escherichia coli. Biochim. biophys. Acta (Amst.) 138, 107–123 (1967)

    CAS  Google Scholar 

  • Kepes, A., Beguin, S.: Hydroxylamine, an inhibitor of peptide chain initiation. Biochem. biophys. Res. Commun. 18, 377–383 (1965)

    PubMed  CAS  Google Scholar 

  • Kerridge, D.: The effect of amino acid analogues on the synthesis of bacterial flagella. Biochim. biophys. Acta (Amst.) 31, 579–581 (1959)

    CAS  Google Scholar 

  • Kerridge, D. The effect of inhibitors on the formation of flagella by Salmonella typhimurium. J. gen. Microbiol. 23, 519–538 (1960)

    PubMed  CAS  Google Scholar 

  • Kerridge, D. The effect of environment on the formation of bacterial flagella. Symp. Soc. gen. Microbiol. 11, 41–68 (1961)

    Google Scholar 

  • Lark, K. G.: Regulation of chromosome replication and segregation in bacteria. Bact. Rev. 30, 3–32 (1966)

    PubMed  CAS  Google Scholar 

  • Lascelles, J.: Adaptation to form bacteriochlorophyll in Bhodopseudomonas spheroides: Changes in activity of enzymes concerned in pyrrole synthesis. Biochem. J. 72, 508–518 (1959)

    PubMed  CAS  Google Scholar 

  • Leick, V.: Effect of actinomycin D and DL-p-fluorophenylalanine on ribosome formation in Tetrahymena pyriformis. Europe. J. Biochem. 8, 215–220 (1969)

    CAS  Google Scholar 

  • Lev, M.: Vitamin K deficiency in Fusiformis nigrescens. I. Influence on whole cells and cell envelope characteristics. J. Bact. 95, 2317–2324 (1968)

    PubMed  CAS  Google Scholar 

  • Lhoas, P.: Mitotic haploidization by treatment of Aspergillus niger diploids with para-fluorophenylalanine. Nature (Lond.) 190, 744 (1961)

    CAS  Google Scholar 

  • Lettauer, U.Z., Revel, M., Stern, R.: Coding properties of methyl-deficient phenylalanine transfer RNA. Cold Spr. Harb. Symp. quant. Biol. XXXI, 501–514 (1966)

    Google Scholar 

  • McCully, K.S., Forbes, E.: The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352–359 (1965)

    PubMed  CAS  Google Scholar 

  • Mitani, M., Iino, T.: Phenocopies of a heteromorphous flagellar mutant in Salmonella. J. Bact. 93, 766–767 (1967)

    PubMed  CAS  Google Scholar 

  • Moyed, H.S., Friedman, M.: Interference with feed back control: A mechanism of antimetabolite action. Science 129, 968–969 (1959)

    PubMed  CAS  Google Scholar 

  • Munier, R.: Substitution totale de la phénylalanine par To ou la m-fluorophénylalanine dans les protéines d’Escherichia coli. C.R. Acad. Sci. (Paris) 248, 1870–1873 (1959)

    CAS  Google Scholar 

  • Munier, R., Cohen, G.N.: Incorporation d’analogues structuraux d’aminoacides dans les proteins bacteriennes. Biochim. biophys. Acta (Amst.) 21, 592–593 (1956)

    CAS  Google Scholar 

  • Munier, R., Cohen, G.N. Incorporation d’analogues structuraux d’aminoacides dans les proteines bacteriennes au cours de leur synthese in vivo. Biochim. biophys. Acta (Amst.) 31, 378–391 (1959)

    CAS  Google Scholar 

  • Munier, R., Drappier, A., Thommegay, C.: Substitution totale des analogues 5 et 6-fluorés du tryptophane à cet aminoacide dans les protéines d’Escherichia coli. Effect de cette incorporation, sur la biosynthèse d’ enzymes. C.R. Acad. Sci. (Paris) 265, 1429–1432 (1967)

    CAS  Google Scholar 

  • Munier, R., Sarrazin, G.: Différence existant entre les propiétés de la β-galactosidase normale et celles de la β-galactosidase dont tous les groupes tyrosine sont remplaces par la 3-fluorotyrosine. C.R. Acad. Sci. (Paris) 259, 677–680 (1964)

    CAS  Google Scholar 

  • Munier, R., Sarrazin, G. Substitution totale de la 3-fluorotyrosine à la tyrosine dans les protéines d’ Escherichia coli. C.R. Acad. Sci. (Paris) 256, 3376–3378 (1963)

    CAS  Google Scholar 

  • Nisman, B., Hirsch, M.: Étude de I’activation et de Fincorporation des acides aminés par des fractions enzymatiques d’E. coli. Ann. Inst. Pasteur 95, 615–636 (1958)

    CAS  Google Scholar 

  • Okuda, K., Edwards, G.C., Winnick, T.: Biosynthesis of gramicidin and tyrocidine in the Dubos strain of Bacillus brevis. I. Experiments with growing cultures. J. Bact. 85, 329–338 (1963)

    PubMed  CAS  Google Scholar 

  • Orgel, L.E.: Adaption to wide-spread disturbance of enzyme function. J. molec. Biol. 9, 208–212 (1964)

    PubMed  CAS  Google Scholar 

  • Pauling, L.: The Nature of the Chemical Bond. 3rd Ed. New York: Cornell Univ. Press 1960

    Google Scholar 

  • Perkins, J. P., Louie, D.D., Aronson, J.N.: Effects of some amino acid analogues on Bacillus cereus sporulation using static and shaken cultures. Canad. J. Microbiol. 9, 791–797 (1963)

    CAS  Google Scholar 

  • Pine, M.J.: Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J. Bact. 93, 1527–1533 (1967)

    PubMed  CAS  Google Scholar 

  • Polsinelli, M.: Linkage relations between genes for amino acid or nitrogenous base biosynthesis and genes controlling resistance to structurally correlated analogs. G. Microbiol. 13, 99–110(1965)

    CAS  Google Scholar 

  • Previc, E., Binkley, S.: Repression and inhibition of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase by parafluorophenylalanine in Escherichia coli. Biochem. biophys. Res. Commun. 16, 162–166 (1964a)

    CAS  Google Scholar 

  • Previc, E., Binkley, S. Slow exponential growth of Escherichia coli in presence of p-fluorophenylalanine. Effects of the analog on aromatic biosynthesis. Biochim. biophys. Acta (Amst.) 87, 277–290 (1964b)

    CAS  Google Scholar 

  • Rapoport, G., Dedonder, R.: Synthèse de la lévane-sucrase chez Bacillus subtilis en presence d’analogues structuraux d’amino-acides. Biochim. biophys. Acta (Amst.) 89, 354–356 (1964)

    CAS  Google Scholar 

  • Rasmussen, L.: Effects of DL-p-fluorophenylalanine on Paramecium aurelia during the cell generation cycle. Exp. Cell Res. 45, 501–504 (1967)

    PubMed  CAS  Google Scholar 

  • Rasmussen, L., Zeuthen”, E.: Cell division and protein synthesis in Tetrahymena, as studied with p-fluorophenylalanine. C.R. Lab. Carlsberg 32, 333–358 (1963)

    Google Scholar 

  • Rennert, O.M., Anker, H.S.: On the incorporation of 5’, 5’, 5’ -trifluoroleucine into proteins of E. coli. Biochem. J. 2, 471–476 (1963)

    CAS  Google Scholar 

  • Richmond, M.H.: Immunological properties of exopenicillinase synthesized by Bacillus cereus 569/H in the presence of amino acid analogues. Biochem. J. 77, 112–121 (1960a)

    PubMed  CAS  Google Scholar 

  • Richmond, M.H. Incorporation of DL-β-(p-fluorophenyl) [β-14C] alanine into exopenicillinase by Bacillus cereus 569/H. Biochem. J. 77, 121–135 (1960b)

    PubMed  CAS  Google Scholar 

  • Richmond, M.H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev. 26, 398–420 (1962)

    PubMed  CAS  Google Scholar 

  • Richmond, M.H. Random replacement of phenylalanine by p-fluorophenylalanine in alkaline phosphatase(s) formed during biosynthesis by E. coli. J. molec. Biol. 6, 284–294 (1963)

    PubMed  CAS  Google Scholar 

  • Richmond, M.H. The enzymic basis of specific antibacterial action by structural analogues. Biol. Rev. 40, 93–128 (1965)

    PubMed  CAS  Google Scholar 

  • St., Lawrence, P., Maling, B.D., Altwerger, L., Rachmeler, M.: Mutational alteration of permeability in Neurospora: Effects on growth and the uptake of certain amino acids and related compounds. Genetics 50, 1383–1402 (1964)

    Google Scholar 

  • Samborski, D.J., Forsyth, F.R.: Inhibition of rust development on detached wheat leaves by metabolites, antimetabolites, and enzyme poisons. Canad. J. Bot. 38, 467–476 (1960)

    CAS  Google Scholar 

  • Schaechter, M., Maaløe, O., Kjeldgaard, N.O.: Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. gen. Microbiol. 19, 592–606 (1958)

    PubMed  CAS  Google Scholar 

  • Scharff, M.D., Summers, D.F., Levintow, L.: Further studies on the effect of p-fluorophenylalanine and puromycin on polio virus replication. Ann. New York Acad. Sci. 130, 282–290 (1965)

    CAS  Google Scholar 

  • Scharff, M.D., Thorén, M.M., McElvain, N.F., Levintow, L.: Interruption of poliovirus RNA synthesis by p-fluorophenylalanine and puromycin. Biochem. biophys. Res. Commun. 10, 127–132 (1963)

    CAS  Google Scholar 

  • Shearn, A., Horowitz, N.H.: A study of transfer ribonucleic acid in Neurospora. I. The attachment of amino acids and amino acid analogs. Biochemistry 8, 295–303 (1969)

    PubMed  CAS  Google Scholar 

  • Shive, W., Skinner, C.G.: Amino acid analogues. In: R.W. Hochster and J.H. Quastel (Eds.), Metabolic Inhibitors, pp. 1–73. New York: Academic Press Inc. 1963

    Google Scholar 

  • Sinha, U.: Aromatic amino acid biosynthesis and p-fluorophenylalanine resistance in Aspergillus nidulans. Genet. Res. 10, 261–272 (1967)

    PubMed  CAS  Google Scholar 

  • Smith, L.C., Ravel, J.M., Lax, S.R., Shive, W.: The effects of phenylalanine and tyrosine analogs on the synthesis and activity of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetases. Arch. Biochem. Biophys. 105, 424—430 (1964)

    PubMed  Google Scholar 

  • Sorsoli, W.A., Spence, K.D., Parks, L.W.: Amino acid accumulation in ethionine-resistant Saccharomyces cerevisiae. J. Bact. 88, 20–24 (1964)

    PubMed  CAS  Google Scholar 

  • Surdin, Y., Sly, W., Sire, J., Bordes, A.M., DeRobichon-Szulmajster, H.: Proprietes et contrôle génétique du système d’accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 107, 546–566 (1965)

    CAS  Google Scholar 

  • Tanami, Y., Pollard, M.: Effect of p-fluorophenylalanine on psittacosis virus in tissue cultures. J. Bact. 83, 437–442 (1962)

    PubMed  CAS  Google Scholar 

  • Thang, M.N.: Rôle du chloramphenicol dans la synthese de l’ARN en presence des analogues d’acides aminés. Bull. Soc. Chim. biol. (Paris) 47, 573–583 (1965)

    CAS  Google Scholar 

  • Thiebe, R., Zachau, H.G.: A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Europe. J. Biochem. 5, 546–555 (1968)

    CAS  Google Scholar 

  • Trela, J.M., Freundlich, M.: Uncoupling of protein and ribonucleic acid synthesis by 5’, 5’, 5’-trifiuoroleueine in Salmonella typhimurium. J. Bact. 99, 107–112 (1969)

    PubMed  CAS  Google Scholar 

  • van Andel, O.M.: Fluorophenylalanine as a systemic fungicide. Nature (Lond.) 194, 790 (1962)

    Google Scholar 

  • Verwoerd, D.W., Hausen, P.: Studies on the multiplication of a member of the Columbia SK group (ME virus) in L cells. IV. Role of “early proteins” in virus induced metabolic changes. Virology 21, 628–635 (1963)

    PubMed  CAS  Google Scholar 

  • Waltho, J. A., Holloway, B.W.: Suppression of fluorophenylalanine resistance by mutation to streptomycin resistance in Pseudomonas aeruginosa. J. Bact. 92, 35–42 (1966)

    PubMed  CAS  Google Scholar 

  • Webster, R.E., Gross, S.R.: The a-isopropylmalate synthetase of Neurospora. I. The kinetics and end product control of a-isopropylmalate synthetase function. Biochem. J. 4, 2309–2318 (1965)

    CAS  Google Scholar 

  • Welker, N.E., Campbell, L.L.: De novo synthesis of a-amylase by Bacillus stearothermo-philus. J. Bact. 86, 1202–1210 (1963)

    PubMed  CAS  Google Scholar 

  • Welker, N.E., Campbell, L.L. Preferential synthesis of a-amylase by Bacillus stearothermophilus in the presence of 5-methyl-tryptophan. J. Bact. 87, 828–831 (1964)

    PubMed  CAS  Google Scholar 

  • Winnick, R.E., Lis, BL, Winnick, T.: Biosynthesis of gramicidin S. I. General characteristics of the process in growing cultures of Bacillus brevis. Biochim. biophys. Acta (Amst.) 49, 451–462 (1961a)

    CAS  Google Scholar 

  • Winnick, R.E., Winnick, T.: Biosynthesis of gramicidin S. II. Incorporation experiments with labeled amino acid analogs, and the amino acid activation process. Biochim. biophys. Acta (Amst.) 53, 461–468 (1961b)

    CAS  Google Scholar 

  • Yoshida, A.: Studies on the mechanism of protein synthesis; Incorporation of p-fluoro-phenylalanine into a-amylase of Bacillus subtilis. Biochim. biophys. Acta (Amst.) 41, 98–103 (1960)

    CAS  Google Scholar 

  • Zeuthen, E.: The temperature-induced division synchrony in Tetrahymena. In: E. Zeuthen (ed.), Synchrony in Cell Division and Growth, pp. 99–158. New York: Interscience Publishers 1964

    Google Scholar 

  • Zeuthen, E., Rasmussen, L.: Incorporation of DL-p-fluorophenylalanine into proteins of Tetrahymena. J. Protozool., Suppl. 13, 29–30 (1966)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Marquis, R.E. (1970). Fluoroamino Acids and Microorganisms. In: Smith, F.A. (eds) Pharmacology of Fluorides. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 20 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-99973-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-99973-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-99975-8

  • Online ISBN: 978-3-642-99973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics