The Determination of Planetary Masses from Radio Tracking of Space Probes and Planetary Radar

  • W. G. Melbourne
Part of the COSPAR-IAU-IAG/IUGG-IUTAM book series (IUTAM)


This paper reviews the progress in recent years in determining the masses of the terrestrial planets through radio tracking information from space probes and from planetary radar measurements. The history over the past decade of radio tracking information from the Mariner, Pioneer and lunar spacecraft, and planetary radar information is reviewed; the progress in these new technologies in terms of the resulting improvements in the accuracy of Doppler and time-delay measurements is emphasized. The use of these new data types to improve the planetary masses, other astronomical constants, and the planetary ephemerides, is described. New values for planetary masses and related constants based on weighted least squares results using information from radio tracking and radar measurements available over the periods 1962-1968 is presented. The internal consistency of these results is reviewed and a discussion of the estimated accuracy of these new determinations is given. The potential accuracy of these results is shown to be about an order of magnitude better than the presently quoted error bounds.


Planetary Mass Radio Tracking Planetary Ephemerid Radio Tracking Data Astronomical Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DSIF S-Band Tracking and Communication System, Vol. II. EPD-256, Jet Propulsion Laboratory 1965.Google Scholar
  2. 2.
    Tausworthe, R. C.: Digital Communication and Tracking: Ranging Measurement, SPS 37-42, Vol. II, p. 52. Jet Propulsion Laboratory 1968.Google Scholar
  3. 3.
    Tatjsworthe, R. C.: Ranging the 1967 Mariner to Venus. Paper No.36.4, 1967, IEEE Intern. Conf. Record, 20-23 March, New York.Google Scholar
  4. 4.
    Goldstein, R. M.: Radar Exploration of Venus. TR 32-396, Jet Propulsion Laboratory 1965.Google Scholar
  5. 5.
    Evans, J. V., Hagfors, T., ed.: Radar Astronomy. New York: McGraw-Hill 1968.Google Scholar
  6. 6.
    Hamilton, T. W., Melbourne, W. G.: Information Content of a Single Pass of Doppler Data, SPS 37-39, Vol. III, p. 18. Jet Propulsion Laboratory 1966.Google Scholar
  7. 7.
    Curkendall, D. W.: Six-Parameter Model Characterizing Doppler Information Received While Tracking a Distant Spacecraft, SPS 37-47, Vol. II, p. 15. Jet Propulsion Laboratory 1967.Google Scholar
  8. 8.
    Dyer, P., Mcreynolds, S. R.: Data Compression and its Application to Orbit Determination, SPS 37-53, Vol. II, p. 39. Jet Propulsion Laboratory 1968.Google Scholar
  9. 9.
    Mottinger, N. A.: Breaking The 10 Meter Level in Obtaining Consistent Station Location Solutions from the Reduction of Deep Space Probe Data. Jet Propulsion Laboratory, April 23, 1969.Google Scholar
  10. 10.
    Clémence, G. M.: Annual Review of Astronomy and Astrophysics (ed. by L. Goldberg). Vol. III, p. 93, Palo Alto, California 1965.Google Scholar
  11. 11.
    Anderson, J. D.: Doctoral Thesis, UCLA, 1967. Also: Determination of the Masses of the Moon and Venus and the Astronomical Unit from Radio Tracking Data of the Mariner II Spacecraft. TR 32–816. Jet Propulsion Laboratory 1967.Google Scholar
  12. 12.
    Null, G. W., Gordon, G. J., Tito, D. A.: The Mariner IV Flight Path and Its Determination from Tracking Data. TR 32-1108, Jet Propulsion Laboratory 1967.Google Scholar
  13. 13.
    Pease, G. E., et al.: Mariner V Trajectory and Its Determination from Tracking Data. TR 32-1363, Jet Propulsion Laboratory.Google Scholar
  14. 14.
    Bourke, R. D., Mcreynolds, S. R., Thuleen, K. L.: Translation Forces on the Mariner V Spacecraft Stemming from the Attitude Control System. J. Spacecraft and Rockets, in press.Google Scholar
  15. 15.
    Bourke, R. D., Curkendall, D. W., Mcreynolds, S. R.: A Technique for the Reduction of Random Attitude-Control-System-Generated Non-Gravitational Forces. SPS 37-48, Vol. II, p. 27, Jet Propulsion Laboratory 1967.Google Scholar
  16. 16.
    Peabody, P. R., Scott, J. F., Orozco, E. G.: Users Description of JPL Ephe-meris Tapes. TR 32-580, Jet Propulsion Laboratory 1964.Google Scholar
  17. 17.
    Peabody, P. R., Scott, J. F., Oroczo, E. G.: JPL Ephemeris Tape E9510, E9511, and E9512. TM 33-167, Jet Propulsion Laboratory 1964.Google Scholar
  18. 18.
    Clémence, G. M.: Theory of Mars. Completion. Astron. Papers 16 (1961) Part 2.Google Scholar
  19. 19.
    Ash, M. E., Shapiro, I. I., Smith, W. B.: Astron. J. 72 (1967) 338.CrossRefGoogle Scholar
  20. 20.
    Melbourne, W. G., O’Handley, D. A.: A Consistent Ephemeris of the Major Planets and the Solar System. SPS 37-51, Vol. III, p. 4, Jet Propulsion Laboratory 1968.Google Scholar
  21. 21.
    Kulikov, D. K.: Accuracy of the Inner Planet Coordinates, in: IAU Symposium No. 21, Le Systeme De Constantes Astronomique, ed. by J. Kovalevsky, Paris: Gauthier-Villars and Cie. 1965.Google Scholar
  22. 22.
    Anderson, J. D., Cain, D. L., Efron, L., Goldstein, R. M., Melbourne, W. G., O Handley, D. A., Pease, G. E., Tausworthe, R. C.: J. of Atmospheric Sciences 5 (1968) 1171.CrossRefGoogle Scholar
  23. 23.
    Ash, M. E., Shapiro, I.I., Smith, W. B.: Private Correspondence, 1969.Google Scholar
  24. 24.
    Eckert, W. J., Jones, R., Clark, H. K.: Improved Lunar Ephemeris, 1952 to 1959, Washington, D.C.: U.S. Government Printing Office 1954.Google Scholar
  25. 25.
    Mulholland, J. D.: Application of a Transformation of Equinox in the Lunar Theory: Lunar Ephemeris Number 16. SPS 37-57, Vol. II, Jet Propulsion Laboratory 1969.Google Scholar
  26. 26.
    Eckert, W. D., Smith, H. F., Jr.: Astron. Papers of the American Ephemeris, Vol. 19, Part II. U.S. Nautical Almanac Office, GPO, Washington, D.C.Google Scholar
  27. 27.
    Clémence, G. M., Porter, J. G., Sadler, D.H.: Aberration in the Lunar Ephemeris. Astron. J. 57 (1952).Google Scholar
  28. 28.
    Clémence, G. M.: Remarks on Current Lunar Theory, in: Proceedings of the JPL Seminar on Uncertainties in the Lunar Ephemeris, ed. by J. D. Mulholland. Technical Report 32-1247, Jet Propulsion Laboratory 1968.Google Scholar
  29. 28a.
    Koehler, R. L.: J. of Geophysical Research, Space Physics 73 (1968) 4883.CrossRefGoogle Scholar
  30. 28b.
    Melbourne, W. G., Mulholland, J. D., Sjogren, W. L., Sturms, F. M., Jr.: Constants and Related Information for Astrodynamic Calculations, 1968. Technical Report 32-1306, Jet Propulsion Laboratory 1968.Google Scholar
  31. 29.
    Clémence, G. M.: Masses of the Principal Planet, Trans. IAU 12B (1968) 609.Google Scholar
  32. 30.
    Lieske, J. H.: Astron. J. 73 (1968) 628.CrossRefGoogle Scholar
  33. 31.
    Rabe, E.: Astron. J. 55 (1950) 112.CrossRefGoogle Scholar
  34. 32.
    Schubart, J., Zech, G.: Nature 214 (1967) 900.CrossRefGoogle Scholar
  35. 33.
    Rabe, E., Francis, M.: Astron. J. 72 (1967) 856.CrossRefGoogle Scholar
  36. 34.
    Sjogren, W. L., Trask, D. W., Vegos, C. J., Wollenhaupt, W. R.: Physical Constants as Determined from Radio Tracking of the Ranger Lunar Probes. TR 32-1057, Jet Propulsion Laboratory 1966.Google Scholar
  37. 35.
    Vegos, C. J., Trask, D.W.: Ranger Combined Analysis, Part II: Determi-nation of the Masses of the Earth and Moon from Radio Tracking Data. SPS 37-44, Vol. III, p. 11, Jet Propulsion Laboratory 1967.Google Scholar
  38. 36.
    Wong, S. K.: Deep Space Station Locations and Physical Constants Solutions of Surveyor Missions. SPS 37-52, Vol. II, p. 12, Jet Propulsion Laboratory 1968.Google Scholar
  39. 37.
    Mottinger, N. A., Sjogren, W. L.: Consistency of Lunar Orbiter II Ranging and Doppler Data. SPS 37-46, Vol. III, p. 19, Jet Propulsion Laboratory 1967.Google Scholar
  40. 38.
    Anderson, J. D., Pease, G. E., Efron, L., Tausworthe, R. C.: Astron. J., Vol. 73, No. 2, Part II (1968) 52.Google Scholar
  41. 39.
    Anderson, J. D., Hilt, D. E.: Improvement of Astronomical Constants and Ephemerides from Pioneer Radio Tracking Data. Astronaut. Soc. Paper No. 68–130, Jackson, Wyoming, 1698.Google Scholar
  42. 40.
    Hamilton, T. W.: Proceedings of the IAU Symposium No. 21: Le Système De Constants Astronomique, ed. by J. Kovalevsky, Paris: Gauthier-Villars and Cie. 1965.Google Scholar
  43. 41.
    Brouwer, D.: Relations Among Some Important Astronomical Constants, IAU Symposium No. 21, ibid.Google Scholar
  44. 42.
    Melbourne, W. G., O’ Handley, D. A.: Recent Development Ephemerides and the Mass of Mercury. SPS 37-53, Vol. III, p. 1, Jet Propulsion Laboratory 1968.Google Scholar
  45. 43.
    Duncombe, R. L.: Motion of Venus, 1750-1949, Astronomical Papers, Vol. XVI, Part. I (1958) 39.Google Scholar
  46. 44.
    Anderson, J. D., Null, G. W., Thornton, C. T.: The Evaluation of Certain Astronomical Constants from the Radio Tracking of Mariner II in: Progress in Astronautics and Aeronautics, Vol. IV, p. 311, New York: Academic Press 1964.Google Scholar
  47. 45.
    Anderson, J. D., Efron, L.: The Mass and Dynamical Oblateness of Venus. Presented at the 129th Meeting of the American Astronomical Society, University of Hawaii, Honolulu, Hawaii, March 30-April 2, 1969.Google Scholar
  48. 46.
    Null, G. W.: Astron. J. 72 (1967) 1292.CrossRefGoogle Scholar
  49. 47.
    Null, G. W.: Private Communications 1968.Google Scholar

Copyright information

© Springer Verlag, Berlin/Heidelberg 1970

Authors and Affiliations

  • W. G. Melbourne
    • 1
  1. 1.Systems Analysis Research SectionJet Propulsion LaboratoryPasadenaUSA

Personalised recommendations