Fieber und endogene Hyperthermie durch pharmakologische, immunologische und physikalische Maßnahmen

  • Erwin Eichenberger
Part of the Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie book series (HEP, volume 16 / 15)

Zusammenfassung

Fieber ist ein jedem Laien geläufiger Begriff, er weiß aus eigener Erfahrung, was er darunter zu verstehen hat. Auch für den Arzt ist es ein eindeutiges, meßbares Krankheitssymptom, er kennt allerdings noch andere pathologische Steigerungen der Körpertemperatur, die er, wie z.B. beim Hitzschlag, nicht als Fieber, sondern als Überwärmung oder Hyperthermie bezeichnet. In einer wesentlich unglücklicheren Lage ist der Physiologe, der diese beiden Begriffe definieren, ihre Unterschiede beschreiben und erklären soll, wie Fieber und wie Hyperthermie zustande kommen Dazu fehlen ihm aber heute wesentliche Voraussetzungen. Noch vor 30 Jahren glaubte er zu wissen, daß die Körpertemperatur durch nervöse Zentren im Hypothalamus kontrolliert und konstant gehalten werde, er glaubte ihre Funktionsweise und ihre zentripetalen und zentrifugalen Verbindungen mit der Peripherie zu kennen. Fieber wurde als eine Störung der Funktion dieses Wärmezentrums bezeichnet, wobei allerdings umstritten war, ob es sich um eine Reizung, also eine aktive Leistung, oder eine Lähmung, d. h. Wegfall einer normalerweise von diesem Zentrum auf die Stoffwechselprozesse ausgeübten Hemmwirkung handelte (Freund 1926). Die stofflichen Veränderungen in den für das Fieber verantwortlichen Zellen waren unbekannt und sind es bis heute geblieben. Dazu sind viele der damals feststehenden Tatsachen ins Wanken geraten: Homoiothermie ist nicht einfach die Leistung eines Gehirnzentrums, sondern ist eine Eigenschaft des gesamten Organismus (Adolph 1951). Auch isolierte Gewebe behalten die charakteristischen homoiothermen Stoffwechseleigenschaf ten bei (Pichotka 1961). Wärmeregulation und Fieberfähigkeit sind nicht ausschließlich an die Intaktheit des Wärmezentrums im Hypothalamus oder dessen nervösen Verbindungen mit der Peripherie gebunden (Thauer 1939, 1941, 1958), langsam ablaufende Stoffwechseladaptationen an veränderte Umgebungstemperaturen sind auch ohne Zentrum möglich und kommen sogar bei poikilothermen Lebewesen (Precut 1955; Behmann und Meissner 1961, 1962) und Pflanzen (Pichotka 1957) vor. Schließlich macht uns auch die Tatsache Schwierigkeiten, daß die Normaltemperatur, also der Sollwert des Wärmereguliersystems keine konstante Größe ist (Nielsen 1937, 1938; Glaser und Newling 1957), sondern daß sie bei körperlicher Arbeit ansteigt und beim Menschen Werte bis zu 39° (Pembrey 1904, Löffler 1925 u. v. a.) erreichen kann. Dieselbe Körpertemperatur kann also einmal Fieber oder Hyperthermie, unter Umständen aber auch Normaltemperatur sein.

Literaturverzeichnis

  1. Abderaalden, E., and Slavu: Weitere Studien über das physiologische Verhalten von 1-, cl-und dl-Suprarenin. III. Mitt. Hoppe-Seylers Z. physiol. Chem. 59, 129 (1909).CrossRefGoogle Scholar
  2. Abderhalden, R.: Über einen körpereigenen Leukocytose bewirkenden Faktor. Experientia (Basel) 4, 114 (1948).CrossRefGoogle Scholar
  3. Abderhalden, R.: Untersuchungen über das Vorkommen eines Leukocytose bewirkenden Stoffes im Harn. Z. Vitamin-, Hormon-and Fermentforsch. 2, 365 (1949).Google Scholar
  4. Abderhalden, R., G. Mall and H. Binder: Klinische Untersuchungen mit Leukerethin; seine Anwendung zur Umstimmungstherapie. Klin Wschr. 29, 444 (1951).PubMedCrossRefGoogle Scholar
  5. Abelin, I.: Über die Aktivierung des Schilddrüsenhormons durch Methylenblaand Biochem. Z. 326, 164 (1955).PubMedGoogle Scholar
  6. Abrams, R., and H. T. Hammel: Cyclic variations in hypothalamic temperature in unasthetized rats. Amer. J. Physiol. 208, 698 (1965).Google Scholar
  7. Adler, L.: Schilddrüse und Wärmeregulation (Untersuchungen an Winterschläfern). NaunynSchmiedeberg’s Arch. exp. Path. Pharmak 86, 159 (1920a).CrossRefGoogle Scholar
  8. Adler, L.: Der Angriffspunkt der Blutdrüsenhormone bei der Wärmeregulation. Weitere Untersuchungen an Winterschläfern. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 87, 406 (1920b).CrossRefGoogle Scholar
  9. Adler, L.: Untersuchungen über die Funktion des Pankreas. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 91, 110 (1921).CrossRefGoogle Scholar
  10. Adolph, E. F.: Some differences in response to low temperature between warm-blooded and cold-blooded vertebrates. Amer. J. Physiol. 166, 92 (1951).PubMedGoogle Scholar
  11. Agolini, G.: I Pyrogeni. Giorn. ital. Chemioter. 4, 562 (1957).Google Scholar
  12. Aisenstat, M.: Die Lage des Wärmezentrums des Kaninchens und das Erkennen der Lage desselben durch äußere Merkmale. Arch. Physiol. 1909, 475.Google Scholar
  13. Asl, S. J.: Symposium on microbial toxins. Bact. Rev. 19, 263 (1955).Google Scholar
  14. Alexander, B. F., L. F. Mueller and R. T. Nick: Evaluation of the guinea pig as a test animal for pyrogenicity studies. Fed. Proc. 13, 330 (1954).Google Scholar
  15. Alexander, B. F., L. F. Mueller and R. T. Nick: Guinea pig as a test animal for pyrogenicity. Fed. Proc. 14, 313 (1955).Google Scholar
  16. Allen, I. V.: The pathogenesis of fever in tuberculin hypersensitivity. Tubercle (Lond.) 46, 367 (1965).CrossRefGoogle Scholar
  17. Andersen, H. T., H. T. Hammel and J. D. Hardy: Effect of hypothalamic heating on the development of pyrogenic fever in the unanesthetized dog. Acta physiol. stand. 50, Suppl. 175, 6 (1960).Google Scholar
  18. Anderson, W. H., and R. Brodersen: Hypothermia in the mouse as a bio-assay of endotoxin protection factor in impure penicillin. Proc. Soc. exp. Biol. (N.Y.) 70, 322 (1949).Google Scholar
  19. Andersson, B.: Cold defense reaction elicited by electrical stimulation within the septal area of the brain in goats. Acta physiol. scand. 41, 90 (1957).CrossRefGoogle Scholar
  20. Andersson, B., C. C. Gale, and J. W. Sirndsten: Effect of chronic central cooling on alimentation and thermoregulation. Acta physiol. scand. 55, 177 (1962).PubMedCrossRefGoogle Scholar
  21. Andersson, B., R. Grant and S. Larsson: Central control of heat loss mechanism in the goat. Acta physiol. scand. 37, 261 (1956).PubMedCrossRefGoogle Scholar
  22. Andersson, B., and N. Persson: Pronounced hypothermia elicited by prolonged stimulation of the heat loss centre in concious goats. Acta physiol. scand. 41, 10 (1957a).Google Scholar
  23. Andersson, B., and N. Persson: Pronounced hypothermia elicited by prolonged stimulation of the heat loss centre in unanesthetized goats. Acta physiol. scand. 41, 277 (1957b).CrossRefGoogle Scholar
  24. Ankermann, H.: Über die Altersabhängigkeit der kalorigenen Wirkung von Noradrenalin. Acta biol. med. germ. 12, 711 (1964).PubMedGoogle Scholar
  25. Aoyama, K., F. Miyazawa, H. Kurisu, S. Hatta, H. Arai, Y. Fujita, M. Urabe, Y Sakai and T. Aoki: The preparation of bacterial pyrogenic substance and its clinical application. III. The effects of bacterial pyrogenic substance and of the antitumor substances upon Yoshida sarcoma and ascites carcinoma 130. Eisei Shikenjo Hôkoku 74, 361 (1956). Ref. Chem. Abstr. 51, 8198a (1957).Google Scholar
  26. Armin, J., and R. T. Grant: The vasoconstriction caused by a pyrogen. J. Physiol. (Lond.) 138, 417 (1957).Google Scholar
  27. Aronsoan, E.: Über den Ort der Wärmebildung in dem durch Gehirnstich erzeugten Fieber. Virchows Arch. path. Anat. 169, 501 (1902a).CrossRefGoogle Scholar
  28. Aronsoan, E.: Das Wesen des Fiebers. Weitere Beiträge nach experimentellen Untersuchungen. Dtsch. med. Wschr. 28, 76 (1902b).CrossRefGoogle Scholar
  29. Aronsoan, E., and J. Sachs: Ein Wärmezentrum im Großhirn. Dtsch. med. Wschr. 10, 823 (1884).CrossRefGoogle Scholar
  30. Aronsoan, E., and J. Sachs: Die Beziehungen des Gehirns zur Körperwärme und zum Fieber. Experimentelle Untersuchungen. Arch. Physiol. 37, 232 (1885).CrossRefGoogle Scholar
  31. Ascener, B.: Zur Physiologie des Zwischenhirns. Wien. klin. Wschr. 25, 1042 (1912).Google Scholar
  32. Athanasiu, J., and J. Cavallo: In CH. RICHET, Diet. de Physiologie 3, 81 (1898).Google Scholar
  33. Atkins, E.: The relation of a circulating endogenous pyrogen to the cause of experimental fever. Bull. N.Y. Acad. Med. 32, 846 (1956).Google Scholar
  34. Atkins, E.: Pathogenesis of fever. Physiol. Rev. 40, 580 (1960).PubMedGoogle Scholar
  35. Atkins, E.: Studies in staphylococcal fever. II. Responses to culture filtrates. Yale J. Biol. Med. 35, 472 (1963a).Google Scholar
  36. Atkins, E.: Studies in staphylococcal fever. III. Tolerance to culture filtrates. Yale J. Biol. Med. 35, 489 (1963b).Google Scholar
  37. Atkins, E., F. Auason, M. R. Smith and W. B. Wood: Studies on the antipyretic action of Cortisone in pyrogen-induced fever. J. exp. Med. 101, 353 (1955).PubMedCrossRefGoogle Scholar
  38. Atkins, E., and L. R. Freedman: Studies on the mechanism of fever following intravenous inoculation of Staphylococci. J. clin. Invest. 39, 969 (1960).Google Scholar
  39. Atkins, E.: Studies on staphylococcal fever. I. Responses to bacterial cells. Yale J. Biol. Med. 35, 451 (1963).PubMedGoogle Scholar
  40. Atkins, E., and W. CH. Huang: Studies on the pathogenesis of fever with influenzal viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus. J. exp. Med. 107, 383 (1958a).CrossRefGoogle Scholar
  41. Atkins, E., and W. CH. Huang: Studies on the pathogenesis of fever with influenzal viruses. II. The effects of endogenous pyrogen in normal and virus-tolerant recipients. J. exp. Med. 107, 403 (1958b).CrossRefGoogle Scholar
  42. Atkins, E., and W. CH. Huang: Studies on the pathogenesis of fever with influenzal viruses. III. The relations of tolerance to the production of endogenous pyrogen. J. exp. Med. 107, 415 (1958c).CrossRefGoogle Scholar
  43. Atkins, E., and E. S. Snell: Pyrogenic properties of various tissue extracts in the rabbit. J. Physiol. (Lond.) 169, 47 P (1963).Google Scholar
  44. Atkins, E., and E. S. Snell: A comparison of the biological properties of graunegative bacterial endotoxin with leucocyte and tissue pyrogens. In: Bacterial endotoxins, p. 134. New Brunswick, N.J.: Rutgers University Press 1964.Google Scholar
  45. Atkins, E., and E. S. Snell: Fever. In: B. W. Zweifach, and R. T. Mccluskey, The inflammatory process. New York and London: Academic Press 1965.Google Scholar
  46. Atkins, E., and W. B. Woo l: The relation of circulating endogenous pyrogen to the cause of experimental fever. J. clin. Invest. 34, 911 (1955a).Google Scholar
  47. Atkins, E., and W. B. Woo l: Studies on the pathogenesis of fever. I. The presence of transferable pyrogen in the blood stream following injection of typhoid vaccine. J. exp. Med. 101, 519 (1955b).CrossRefGoogle Scholar
  48. Atkins, E., and W. B. Woo l: Studies on the pathogenesis of fever. II. Identification of an endogenous pyrogen in the blood stream following the injection of typhoid vaccine. J. exp. Med. 102, 499 (1955c).CrossRefGoogle Scholar
  49. Atli l, A. G.: Pyrogenic therapy. Brit. med. J. 1918I, 195.Google Scholar
  50. Bacq, Z., L. Brouh, and C. Heymans: Action des hyperthermisants chez le chat sympathectomisé. C. R. Soc. Biol. (Paris) 117, 255 (1934).Google Scholar
  51. Baciitold, H., and A. Fletscher: Einfluß von Isonikotinsäurehydraziden auf den Verlauf der Körpertemperatur nach Reserpin, Monoaminen and Chlorpromazin. Experientia (Basel) 13, 163 (1957).CrossRefGoogle Scholar
  52. Bacterial endotoxins Proceedings of a Symposium. Herausg. M. Dandy and W. BRAUN. New Brunswick, N.J.: Rutgers University Press 1964.Google Scholar
  53. Baker, E. E., W. F. Goebel and E. Perlman: The specific antigens of variants of Shigella sommi. J. exp. Med. 89, 325 (1949).PubMedCrossRefGoogle Scholar
  54. Balcar, J. O., W. D. Sansum and R. T. Woodyatt: Fever and the water reserve of the body. Arch. intern. Med. 24, 116 (1919).CrossRefGoogle Scholar
  55. Banks, IL M.: A study of hyperpyrexia reaction following intravenous therapy. Amer. J. clin. Path. 4, 260 (1934).Google Scholar
  56. Bannister, R. G.: Anhidrosis following intravenous bacterial pyrogen. Lancet 1960 II, 118.CrossRefGoogle Scholar
  57. Barbour, H. G.: Die Wirkung unmittelbarer Erwärmung and Abkühlung der Wärmecentra auf die Körpertemperatur. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 70, 1 (1912).CrossRefGoogle Scholar
  58. Barbour, H. G.: Action of some derivatives of phenylethylamin. J. Pharmacol. exp. Ther. 8, 126 (1916).Google Scholar
  59. Barbour, H. G.: The heat-regulating mechanism of the body. Physiol. Rev. 1, 295 (1921).Google Scholar
  60. Barbour, H. G., and J. Andrews: Morphine as a metabolic stimulant. J. Pharmacol. exp. Ther. 54, 137 (1935).Google Scholar
  61. Barbour, H. G., J. A. Porter and J. M. Seelye: Morphine as a metabolic stimulant. J. Pharmacol. exp. Ther. 65, 332 (1939).Google Scholar
  62. Barbour, H. G., and L. Pm-Non: The control of the respiratory exchange by heating and cooling the temperature centers. J. Pharmacol. exp. Ther. 6, 1 (1914).Google Scholar
  63. Barbour, H. G., and E. S. Wncu: I. The direct application of drugs on the temperature centers. J. Pharmacol. exp. Ther. 5, 105 (1913/14).Google Scholar
  64. Barelli, L.: Ricerche sull’incapacità degli ucelli a presentare temperature febbrili. Sperimentale 86, 409 (1932).Google Scholar
  65. Barger, G., and H. H. Dale: Ergotoxine and some other constituents of ergot. Biochem. J. 2, 240 (1907).PubMedGoogle Scholar
  66. Barker, S. B.: Absence of dinitro-cresol effect in thiouracil-treated rats. Fed. Proc. 5, 4 (1946a).Google Scholar
  67. Barker, S. B.: Effect of thyroid activity upon metabolic response to dinitro-ortho-cresol. Endocrinology 39, 234 (1946b).CrossRefGoogle Scholar
  68. Barker, S. B.: Mechanism of action of the thyroid hormone. Physiol. Rev. 31, 205 (1951).Google Scholar
  69. Barker, S. B.: Thyroid. Ann. Rev. Physiol. 17, 417 (1955).Google Scholar
  70. Barker, S. B.: In vitro action of thyroxine analogs on succinate and maleate oxydation. Endocrinology 61, 534 (1957).PubMedCrossRefGoogle Scholar
  71. Barron, E. S. G., and G. A. Harror: Studies on blood cell metabolism. II. The effect of methylene blue and other dyes upon the glycolysis and lactic formation of mammalian and avian erythrocytes. J. biol. Chem. 79, 65 (1928).Google Scholar
  72. Bartsoras, S. C.: Die Wirkung des Cardiazols auf das Zentrum der Wärmeregulation des Körpers. Habil.-Sehr. Athen 1940.Google Scholar
  73. Becuterew, W. v.: Die Funktion der Nervencentra, Bd. II, S. 1192, 1246. Jena: Gustav Fischer 1909.Google Scholar
  74. Beck, L. V., and M. Fischer: Physiological studies on tumor-inhibiting agents. II. Effect on rectal temperatures in normal rabbits of the serratia marcescens tumor-necrotizing polysaccharide of Shear. Cancer Res. 6, 410 (1946).PubMedGoogle Scholar
  75. Becker, G. H., and M. Bubaum: Clinical and chemical evaluation of intravenous fat emulsions with particular reference to changes of serum electrolytes. Metabolism 6, 766 (1957).PubMedGoogle Scholar
  76. Becker, G. H., and M. I. Grossman: Studies on the thermogenic response to intravenous fat emulsions. J. Lab. clin. Med. 43, 752 (1954).PubMedGoogle Scholar
  77. Becker, J. A., C. B. Green and G. L. Pearson: Properties and uses of thermistors — thermally sensitive resistors. Trans. Amer. Inst. Electr. Engng. 65, 711 (1946).CrossRefGoogle Scholar
  78. Beer, E. J. DE, and P. G. Tullar: The biological estimation of ergometrine. J. Pharmacol. exp. Ther. 71, 256 (1941).Google Scholar
  79. Beeson, P. B.: Development of tolerance to typhoid bacterial pyrogen and its abolition by reticuloendothelial blockade. Proc. Soc. exp. Biol. (N.Y.) 61, 248 (1946).Google Scholar
  80. Beeson, P. B.: Tolerance to bacterial pyrogens. I. Factors influencing its development. J. exp. Med. 86, 29 (1947a).CrossRefGoogle Scholar
  81. Beeson, P. B.: Effect of reticulo-endothelial blockade on immunity to Shwartzman phenomenon. Proc. Soc. exp. Biol. (N.Y.) 64, 146 (1947b).Google Scholar
  82. Beeson, P. B.: Tolerance to bacterial pyrogens. II. Rôle of the reticulo-endothelial system. J. exp. Med. 86 39 (1947c).CrossRefGoogle Scholar
  83. Beeson, P. B.: Temperature-elevating effect of a substance obtained from polymorphonuclear leucocytes. J. clin. Invest. 27, 524 (1948).PubMedGoogle Scholar
  84. Befruann, F. W., and H. D. Meissner: Zum Mechanismus der Temperaturadaptation. Pflügers Arch. ges. Physiol. 274, 76 (1961).Google Scholar
  85. Befruann, F. W., Zur nichtzentralen Temperaturanpassung des Gewebestoffwechsels. I. Einstellung des Sauerstoffverbrauchs bei schnellen Temperaturänderungen. Pflügers Arch. ges. Physiol. 276, 82 (1962).Google Scholar
  86. Benacerraf, B., and M. M. Sebestyen: Effect of bacterial endotoxins on the reticuloendothelial system. Fed. Proc. 16, 860 (1957).PubMedGoogle Scholar
  87. Benacerraf, B., and M. M. Sebestyen, and N. S. Cooper: Clearance of antigen-antibody complexes from the blood by the reticuloendothelial system. J. Immunol. 82, 131 (1959).PubMedGoogle Scholar
  88. Benacerraf, B., and M. M. Sebestyen, and ST. Schloss: A quantitative study of the kinetics of blood clearance of F32-labelled Escherichia coli and Staphylococci by the reticuloendothelial system. J. exp. Med. 110, 27 (1959).PubMedCrossRefGoogle Scholar
  89. Bendelin, F. J.: The leucocyte response to pyrogen in rabbits. J. Amer. Pharm. Ass. 34, 48 (1945).CrossRefGoogle Scholar
  90. Bennett, I. L.: Observations on the fever caused by bacterial pyrogens. I. A study of the relationship between the fever caused by bacterial pyrogens and the fever accompanying acute infections. J. exp. Med. 88, 267 (1948a).CrossRefGoogle Scholar
  91. Bennett, I. L.: Observation on the fever caused by bacterial pyrogens. II. A study of the relationship between the fever caused by bacterial pyrogen and by the intravenous injection of sterile exsudates of acute inflammation. J. exp. Med. 88, 279 (1948b).CrossRefGoogle Scholar
  92. Bennett, I. L.: Comparison of leukocyte changes produced by pyrogens and by anaphylaxis in the guinea pig. Proc. Soc. exp. Biol. (N.Y.) 77, 772 (1951).Google Scholar
  93. Bennett, I. L.: Production of fever and the Shwartzman phenomenon by native dextran. Proc. Soc. exp. Biol. (N.Y.) 81, 266 (1952a).Google Scholar
  94. Bennett, I. L.: Further investigation of effect of colloidal materials upon Shwartzman phenomenon. Proc. Soc. exp. Biol. (N.Y.) 81, 248 (1952b).Google Scholar
  95. Bennett, I. L.: Failure of adrenocorticotropic hormone or cortisone to influence epinephrine-induced fever in the rabbit. Bull. Johns Hopk. Hosp. 96, 231 (1955).Google Scholar
  96. Bennett, I. L.: Studies on the pathogenesis of fever. III. Failure to demonstrate fever-producing substances in the tissues of leukopenic rabbits. Bull. Johns Hopk. Hosp. 98, 1 (1956a).Google Scholar
  97. Bennett, I. L.: Studies on the pathogenesis of fever. IV. Further observations on the production of fever in rabbits by the fluid of sterile exudates. Bull. Johns Hopk. Hosp. 98, 7 (1956b).Google Scholar
  98. Bennett, I. L.: Studies on the pathogenesis of fever. V. The fever accompanying pneumococcal infection in the rabbit. Bull. Johns Hopk. Hosp. 98, 216 (1956c).Google Scholar
  99. Bennett, I. L.: In: Polysaccharides in biology. Trans. Second Conf. Josiah Macy Found. p. 190, 1957.Google Scholar
  100. Bennett, I. L.: Pathogenesis of fever. Bull. N.Y. Acad. Med. 37, 440 (1961).PubMedGoogle Scholar
  101. Bennett, I. L., and P. B. Beeson: The properties and biologic effects of bacterial pyrogens. Medicine (Baltimore) 29, 365 (1950).CrossRefGoogle Scholar
  102. Bennett, I. L.: Studies on the pathogenesis of fever. I. The effect of injection of extracts and suspensions of uninfected rabbit tissues upon the body temperature of normal rabbits. J. exp. Med. 98, 477 (1953a).CrossRefGoogle Scholar
  103. Bennett, I. L.: Studies on the pathogenesis of fever. II. Characterization of fever producing substances from polymorphonuclear leucocytes and from the fluid of sterile exudates. J. exp. Med. 98, 493 (1953b).CrossRefGoogle Scholar
  104. Bennett, I. L.: The effect of cortisone upon reactions of rabbits to bacterial endotoxins with particular reference to required resistance. Bull. Johns Hopk. Hosp. 93, 290 (1953c).Google Scholar
  105. Bennett, I. L., and L. E. Cluff: Influence of nitrogen mustard upon reactions to bacterial endotoxins, Shwartzynan phenomenon and fever. Proc. Soc. exp. Biol. (N.Y.) 81, 304 (1952).Google Scholar
  106. Bennett, I. L.: Bacterial Pyrogens. Pharmacol. Rev. 9, 427 (1957).PubMedGoogle Scholar
  107. Bennett, I. L., and W. R. Keene: Studies of the febrile response to acute bacterial infection and bacterial pyrogens. Bull. N. Y. Acad. Med. 32, 248 (1956).Google Scholar
  108. Bennett, I. L., R. G. Petersdorf and W. R. Keene: Pathogenesis of fever: Evidence for direct cerebral action of bacterial endotoxins. Trans. Ass. Amer. Phyc. 70, 64 (1957).Google Scholar
  109. Bennett, I. L., and R. R. Wagner: Production of fever by influenzal viruses. V. Effect of nitrogen mustard (HN2). Bull. Johns Hopk. Hosp. 97, 43 (1955).Google Scholar
  110. Bennett, I. L., and V. S. Lequire: Pyrogenicity of influenza virus in rabbits. Proc. Soc. exp. Biol. (N.Y.) 71, 132 (1949a).Google Scholar
  111. Bennett, I. L., and V. S. Lequire: The production of fever by influenzal viruses. II. Tolerance in rabbits to the pyrogenic effect of influenzal viruses. J. exp. Med. 90, 335 (1949b).CrossRefGoogle Scholar
  112. Benzinger, T. H.: The thermostatic regulation of human heat production and heat loss. 22. Int. Congr. Physiol. Sci., Leyden 1962, vol. I, part I, p. 415.Google Scholar
  113. Berger, A., G. D. Elenbogen and L. G. Ginger: Pyrogens. Advanc. Chem. 16, 168, Amer. Chem. Soc. (1956).Google Scholar
  114. Berk, R. S., and E. L. Nelson: Effect of pseudomonas on lactate production by monocytes. Proc. Soc. exp. Biol. (N.Y.) 104, 42 (1960).Google Scholar
  115. Berlin, R. D., and W. B. Wood: Molecular mechanisms involved in the release of pyrogen from polymorphonuclear leucocytes. Trans. Ass. Amer. Phycns 75, 190 (1962).Google Scholar
  116. Berlin, R. D., and W. B. Wood: Studies on the pathogenesis of fever. XII. Electrolytic factors influencing the release of endogenous pyrogen from polymorphonulcear leucocytes. J. exp. Med. 119, 697 (1964a).CrossRefGoogle Scholar
  117. Berlin, R. D., and W. B. Wood: Studies on the pathogenesis of fever. XIII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leucocytes. J. exp. Med. 119, 715 (1964b).CrossRefGoogle Scholar
  118. Bernard, CL.: Vorlesungen über die thierische Wärme. Deutsch v. SCHUSTER, Leipzig, 1876. BERRAR, M.: Die Wirkung des Moins auf den Stoffwechsel. (Ein Beitrag zur Physiologie der künstlichen Gicht und des künstlichen Fiebers). Biochem. Z. 49, 426 (1913).Google Scholar
  119. Berry, L. J., D. S. Smythe and L. G. Young: Effects of bacterial Endotoxin on Metabolism. I. Carbohydrate depletion and the protective rôle of cortisone. J. exp. Med. 110, 389 (1959).PubMedCrossRefGoogle Scholar
  120. Bessemans, A.: Températures tissulaires générales chez le lapin normal. Ann. Physiol. Physicochim. biol. 14, 944 (1938).Google Scholar
  121. Biermmian, H. R., K. H. Kelly and F. L. Cordes: The sequestration and visceral circulation of leukocytes in man. Ann N Y Acad. Sci. 57, 850 (1955).CrossRefGoogle Scholar
  122. Billroth, TH.: Beobachtungsstudien über Wundfieber und accidentelle Wundkrankheiten. Langenbecks Arch. klin. Chir. 2, 325 (1862).Google Scholar
  123. Billroth, TH.: Beobachtungsstudien über Wundfieber und accidentelle Wundkrankheiten (zweite Abhandlung). Langenbecks Arch. klin. Chir. 6, 372 (1865).Google Scholar
  124. Billroth, TH.: Neue Beobachtungsstudien fiber Wundfieber. Langenbecks Arch. klin. Chir. 13, 579 (1872).Google Scholar
  125. Binkley, F., W. F. Goebel and E. Perlman: Studies on the Flexner group of dysenteria bacilli. II. The chemical degradation of the specific antigen of type Shigella paradysenteriae (Flexner). J. exp. Med. 81, 331 (1945).PubMedCrossRefGoogle Scholar
  126. Binz, C.: Beiträge zur Kenntnis der Kaffeebestandteile. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 9, 31 (1878).CrossRefGoogle Scholar
  127. Binz, C., B. Benacerraf, F. Grumbach, B.-N. Halpern, J. Levaditi and N. Rist: Etude de l’activité granulopexique du système réticulo-endothélial au cours de l’infection tuberculeuse expérimentale de la souris. Ann. Inst. Pasteur 87, 291 (1954).Google Scholar
  128. Binz, C., B. Benacerraf, and B.-N. Halpern: Effect of Salmonella typhi and its endotoxin on the phagocytosic activity of the reticuloendothelial system in mice. Brit. J. exp. Path. 36, 226 (1955).Google Scholar
  129. Binz, C., B -N Halpern, B. Benacerraf, C. Stiffel and D. Mouton: Action de certains polymères macromoléculaires et notamment du dextran et de la poyvinylpyrrolodone sur la fonction phagocytaire du système réticulo-endothélial. C. R. Soc. Biol. (Paris) 150, 317 (1956).Google Scholar
  130. Bircher, R. P., H. J. Barthelstone and S. C. Wang: Effects of lateral, third and fourth ventricle injections of cardiac glycosides and LSD in unanesthetized dogs. Fed. Proc. 17, 350 (1958).Google Scholar
  131. Bister, F., and F. J. Gees: Beitrag zur pyrogenen Wirkung von Reizstoffen. Z. Naturforsch. 8b, 667 (1953).Google Scholar
  132. Black, A.: A study of artificial pyrexia produced by tetra-hydro-ß-naphthylamine hydrochloride Proc. roy. Soc. Edinb. 31, 333 (1910/11).Google Scholar
  133. BLANDET: (1845) zit. nach K. KISSKALT 1912.Google Scholar
  134. Bock, A.: Über Fiebererscheinungen nach intravenösen Injektionen, vornehmlich indifferenter Partikelchen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 68, 1 (1912).CrossRefGoogle Scholar
  135. Bock, D., and K. Bonhoeffer: Die menschliche Muskeldurchblutung bei künstlichem Fieber. Pflügers Arch. ges. Physiol. 263, 93 (1956).CrossRefGoogle Scholar
  136. Bodel, P. T., and E. Atkins: Studies on staphylococcal fever. IV. Hypersensitivity to culture filtrates. Yale J. Biol. Med. 37, 130 (1964).PubMedGoogle Scholar
  137. Boehme, D., and R. J. Dunos: The effect of bacterial constituents on the resistance of mice to heterologous infection and on the activity of their reticulo-endothelial system. J. exp. Med. 107, 523 (1958).PubMedCrossRefGoogle Scholar
  138. Boivin, A.: Travaux récents sur la constitution chimique et sur les propriétés biologiques des antigènes bactériens. Schweiz. Z. Path. 9, 505 (1946).Google Scholar
  139. Boivin, A., I. Mesrobeanu and L. Meseobeanu: Extraction d’un complexe toxique et antigénique partir du bacille d’Aertrycke. C. R. Soc. Biol. (Paris) 114, 307 (1933).Google Scholar
  140. Boivin, A., and L. Mesrobeanu: Sur les propriétés chimiques d’une substance toxique et immunisante isolée du B. Aertrycke. C. R. Acad. Sci. (Paris) 198, 2211 (1934).Google Scholar
  141. Boivin, A., and L. Mesrobeanu: Recherches sur les antigènes somatiques et sur les endotoxines des bactéries. I. Considérations générales et exposé des techniques utilisées. Rev Immunol. (Paris) 1, 553 (1935).Google Scholar
  142. Boivin, A., and L. Mesrobeanu: II. L’Antigène somatique (antigène 0) de certaines batteries et le constituant principal de leur endotoxine. Rev. Immunol. (Paris) 2, 113 (1936).Google Scholar
  143. Boivin, A., and L. Mesrobeanu: III. Antigène somatique 0 “complet” et variations bactériennes. Rev. Immunol. (Paris) 3, 319 (1937).Google Scholar
  144. Bolles, F. P., and E. C. Andrews: Studies on the pathogenesis of fever and tissue injury in pneumococcal infection. Amer. J. Path. 43, 247 (1963).PubMedGoogle Scholar
  145. Bondy, P. K., G. L. Cohn and C. Castiglione: Etiocholanolone fever. A clinical entity. Trans. Ass. Amer. Phycns 73, 186 (1960).Google Scholar
  146. Boor, A. K., and C. PH. Miller: A carbohydrate-lipid fraction of gonococcus and meningococcus. J. infect. Dis. 75, 47 (1944).CrossRefGoogle Scholar
  147. Boothby, W. M., and I. Sandiford: The calorigenic action of adrenalin chlorid. Amer. J. Physiol. 66, 93 (1923).Google Scholar
  148. Bornstein, A.: Über die Wirkung des Adrenalins auf dei Oxydationsprozesse. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 127, 63 (1927).CrossRefGoogle Scholar
  149. Bouciaert, J. J., and C. Heyalans: Béta-tetrahydronaphtylamine et ergotamine Arch. int. Pharmacodyn. 35, 137 (1929).Google Scholar
  150. Bourguignon, J. De l’argent colloidal. Diss. Paris 1908.Google Scholar
  151. Bourn, J. M., and F. Seibert: The cause of many febrile reactions following intravenous injections. II. The bacteriology of twelve distilled waters. Amer. J. Physiol. 71, 652 (1925).Google Scholar
  152. Bovet, D., and F. Bovet- Nitti: Structure et activité pharmacodynamique des médicaments du système nerveux végétatif. Basel: Karger 1948.Google Scholar
  153. Bovet, D., and M. Virno: Proprietà analettiche ed ipertermizzanti della tetraidro-ß-naftil-etilamine. R. C. Ist. sup. Sanità 15, 870 (1952).Google Scholar
  154. Boyden, S. V.: Fixation of bacterial products by erythrocytes in vivo and by leucocytes. Nature (Loud.) 171, 402 (1953).CrossRefGoogle Scholar
  155. Boyden, S. V.: Immunological response to antigens of the tubercle bacillus: some experimental aspects. Progr. Allergy 5, 149 (1958).Google Scholar
  156. Brandt, N. G., C. N. Sandage and J. M. Birkeland: Effect of intravenous injection of tuberculin on leucocytes of normal and tuberculous rabbits. Proc. Soc. exp. Biol. (N.Y.) 74, 315 (1950).Google Scholar
  157. Brauchei, E., and M. Cloëtta: Über den Einfluß der Allylgruppen auf die pharmakologische Wirkung verschiedener Amine. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 129, 72 (1928).CrossRefGoogle Scholar
  158. Braude, A. I.: Absorption, distribution and elimination of endotoxins and their derivatives. In: Bacterial endotoxins, p. 98. New Brunswick, N.J.: Rutgers University Press 1964.Google Scholar
  159. Braude, A. I., F. J. Carey and M. Zalesky: Investigation of tolerance to bacterial endotoxin with radiochromium labelled E. coli endotoxin. J. clin. Invest. 34, 923 (1955a).Google Scholar
  160. Braude, A. I., F. J. Carey and M. Zalesky: Studies with radioactive endotoxin. II. Correlation of physiologic effects with distribution of radioactivity in rabbits injected with lethal doses of E. coli endotoxin labelled with radioactive sodium chromate. J. clin. Invest. 34, 858 (1955b).CrossRefGoogle Scholar
  161. Braude, A. I., J. L. Jones, and H. Douglas: The behavior of Escherichia coli endotoxin (somatic antigen) during infectious arthritis. J. Immunol. 90, 297 (1963).PubMedGoogle Scholar
  162. Braude, A. I., J. Mcconnell and H. Douglas: Fever from pathogenic fungi. J. clin. Invest. 39, 1266 (1960).PubMedCrossRefGoogle Scholar
  163. Braude, A. I., J. P. Sanford, J. E. Barlett and O. T. Mallery: Effects and clinical significance of bacterial contaminants in transfused blood. J. Lab. clin. Med. 39, 902 (1952).PubMedGoogle Scholar
  164. Braude, A. I., and M. Zalesky: A study of the intermittent character of fever during infection. J. clin. Invest. 35, 693 (1956).Google Scholar
  165. Braude, A. I., and M. Zalesky, and H. Douglas: The mechanism of tolerance to fever. J. clin. Invest. 37, 880 (1958).Google Scholar
  166. Brendel, W., and W. Usinger: Die Bedeutung der Hirntemperatur für die Auslösung des Kältezitterns. Ein Beitrag zur Frage der cerebralen Kältereception. 27. Tagg. Dtsch. Physiol. Ges. Zürich, 1961.Google Scholar
  167. Bret, J., and C. Raymond: L’effet thermogène de l’alpha-étiocholanolone. Presse méd. 68, 1881 (1960).Google Scholar
  168. Brewster, W. R., J.-P. Isaacs, P. F. Osgood and T. L. King: The hemodynamic and metabolic interrelationships in the activity of epinephrine, nor-epinephrine, and the thyroid hormones. Circulation 13, 1 (1956).PubMedGoogle Scholar
  169. Brin, M., and R. H. Yonemoto: Stimulation of the glucose oxydative pathway in human erythrocytes by methylene blue. J. biol. Chem. 230, 307 (1958).PubMedGoogle Scholar
  170. Brink, C. O., and R. Rigler: Über einen scheinbaren Unterschied in der Wirkung von Ergotamin und Ergotoxin auf die Körpertemperatur. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 145, 321 (1929).CrossRefGoogle Scholar
  171. Brittasn, R. T., and P. S. J. Spencer: Measurement of body temperature in concious smale laboratory animals by means of oesophageal thermocouple. J. Pharm. Pharmacol. 16, 497 (1964).CrossRefGoogle Scholar
  172. Brittingham, J. E., and H. Chaplin: Febrile transfusion reactions caused by sensitivity to donor leukocytes and platelets. J. Amer. med. Ass. 165, 819 (1957).CrossRefGoogle Scholar
  173. Brobeck, J. R.: Regulation of body temperature. Aus TH. G. Rucn and J. F. FULTON, Medical Physiology and Biophysics. Philadelphia and London: W. B. Saunders Company 1960.Google Scholar
  174. Brodie, B. B.: Serotonin and nor-epinephrine as antagonistic chemical mediators regulating the central autonomic nervous system. Trans. third conf. on Neuropharmacology. New York: Macy Foundation 1956.Google Scholar
  175. Brody, T. M.: The uncoupling of oxydative phosphorylation as a mechanism of drug action. Pharmacol. Rev. 7, 335 (1955).PubMedGoogle Scholar
  176. Bronx, J. R.: The influence of thyroxine and related compounds on oxydative rate and efficiency of phosphorylation in rat liver mitochondria and submitochondrial particals. Ann N Y Acad. Sci. 86, 494 (1960).Google Scholar
  177. Bruck, L., and A. Guenter: Versuche über den Einfluß der Verletzung gewisser Hirnteile auf die Temperatur des Tierkörpers. Pflügers Arch. ges. Physiol. 3, 578 (1870).CrossRefGoogle Scholar
  178. Brumm, F.: Ein Beitrag zur Physiologie der zentralen Temperaturregulation. Pflügers Arch. ges. Physiol. 222, 142 (1929).CrossRefGoogle Scholar
  179. Brumm, F.: Der Wärmestich als Methode zur Erforschung der Physiologie der zentralen Temperaturregulation. Schweiz. med. Wschr. 71, 384 (1941).Google Scholar
  180. Bry, G.: Über die respirationserregende Wirkung von Phenyläthylaminen. Z. exp. Path. Ther. 16, 186 (1914).CrossRefGoogle Scholar
  181. Buchanan, A. R., and J. E. Roberts: Thermal reactions of young albino rats to intra-peritoneal injections of ergotoxine. Amer. J. Physiol. 155, 64 (1948).PubMedGoogle Scholar
  182. Buchanan, A. R., and J. E. Roberts, and B. E. Robinson: Ergotoxine hyper-and hypo-thermia in albino rats. Proc. Soc. exp. Biol. (N.Y.) 68, 143 (1948).Google Scholar
  183. Buchanan, A. R., J. A. Witt, J. E. Roberts and L. C. Massopust: Peripheral circulatory and metabolic reactions associated with ergotoxine hyper-and hypo-thermia in adult albino rats. Amer. J. Physiol. 163, 62 (1950).PubMedGoogle Scholar
  184. Buciiner, H.: Über Hemmung der Milzbrandinfektion und über das aseptische Fieber. Berl. klin. Wschr. 10, 216 (1890a).Google Scholar
  185. Buciiner, H.: Über pyrogene Stoffe in der Bakterienzelle. Berl. klin. Wschr. 10, 673 (1890b).Google Scholar
  186. Buciiner, H.: Die chemische Reizbarkeit der Leukocyten und deren Beziehung zur Entzündung und Eiteru a. Berl. klin. Wschr. 10, 1084 (1890c).Google Scholar
  187. Buettner, K. J. K., and F. F. Holmes: Diffusion of water vapor through human skin in hot environment and with application of atropin. J. appl. Physiol. 14, 276 (1959).PubMedGoogle Scholar
  188. Bunnell, I. L., and F. R. Griffith jr.: Age and the calorigenic response to subcutaneously administered adrenalin in the rat. Amer. J. Physiol. 138, 669 (1943).Google Scholar
  189. Burn, J. H.: Enzyme at sympathetic nerve endings. Brit. med. J. 1952 I, 784.CrossRefGoogle Scholar
  190. Burrows, W.: Endotoxins. Ann. Rev. Microbiol. 5, 181 (1951).CrossRefGoogle Scholar
  191. Burton, A. J., and H. G. Carter: Purification and characterization of the lipid A compound of the lipopolysaccharide from Escherichia coli. Biochemistry 3, 411 (1964).PubMedCrossRefGoogle Scholar
  192. Buskirk, E. R., R. H. Thompson, M. Rubenstein, and S. M. Wolff: Heat exchange in men and women following intravenous injection of endotoxin. J. appl. Physiol. 19, 907 (1964).PubMedGoogle Scholar
  193. Busse, J.: Thermometry. Aus O. GLASER, Medical Physics, vol. 1. Chicago, Ill.: Year Book Publ. 1951.Google Scholar
  194. Cahn, TR., and J. Houget: Le métabolisme des glucides, lipides et protides au cours d’hyperthermies. C. R. Soc. Biol. (Paris) 113, 587 (1933).Google Scholar
  195. Carey, F. J., A. I. Braude and M. Zalesky: Studies with radioactive Endotoxin. III. The effect of tolerance on the distribution of radioactivity after intravenous injection of Escherichia coli endotoxin labeled with CR51. J. clin. Invest. 37, 441 (1958).PubMedCrossRefGoogle Scholar
  196. Carpenter, C. M.: The effect of heat produced by an ultrahigh frequency oscillator on experimental syphilis in rabbits. Arch. phys. Ther. 12, 137 (1931).Google Scholar
  197. Cazeneuve, P., and R. Lepine: Sur les effects produits par l’ingestion et l’infusion intraveineuse de trois colorants jaunes, dérivés de la houille. C. R. Acad. Sci. (Paris) 101, 1167 (1885).Google Scholar
  198. Cecil, R. L.: Non-specific protein therapy. J. Amer. med. Ass. 105, 1846 (1935).CrossRefGoogle Scholar
  199. Centanni, E.: Untersuchungen über das Infektionsfieber. Das Fiebergift der Bakterien. Dtsch. med. Wschr. 20, 148, 170 (1894).Google Scholar
  200. Centanni, E.: Weitere Beiträge zur Kenntnis des pyrogenen Wirkstoffs des Fiebers. Dtsch. med. Wschr. 66, 263 (1940).CrossRefGoogle Scholar
  201. Cerletti, A.: Lysergic acid diethylamide (LSD) and related compounds. Trans. Sec. Coral. on Neuropharmacol. New York: Macy Foundation 1955.Google Scholar
  202. Cerletti, A., B. Berde, W. Doepfner, H. Emmenegger, H. Konzett, W. R. Schalch, M. Taeschler and H. We id mann: Deseril (Methylergide, VML-491), a specific serotonin antagonist. Sci. Exhibit 6th internat. Congr. Intern. Med. Basle, 1960.Google Scholar
  203. Chahovitch, X., and M. Vichnitch: Action du Chlorhydrate de morphine, de la caféine et de la quinine-uréthane sur le métabolisme énergetique. J. Physiol. Path. gén. 26, 389 (1928).Google Scholar
  204. Chambers, L. A., and G. W. Flosdorf: Sonic extraction of labile bacterial constituents. Proc. Soc. exp. Biol. (N.Y.) 34, 631 (1936).Google Scholar
  205. Chambers, W. W., H. Koenig, R. Koenig and W. F. Windle: Site of action in the central nervous system of a bacterial pyrogen. Amer. J. Physiol. 159, 209 (1949).PubMedGoogle Scholar
  206. Chambers, W. W., and W. F. Windle: Site of action of bacterial pyrogen in cats with central nervous system lesion. Fed. Proc. 6, 89 (1947).PubMedGoogle Scholar
  207. Charonnat, R., and P. Lechat: Recherches sur la nature des pyrogènes des solutés injectables. I. Substances définies d’origine biologique ayant une action pyrogène. Ann pharm. franç. 9, 17 (1951a).Google Scholar
  208. Charonnat, R., and P. Lechat: II. Essais de définition quantitative des substances pyrogènes: indice pyrogénique. Ann. pharm. franç. 9, 22 (1951b).Google Scholar
  209. Cuese, M. W., and J. R. Battisto: Duration of dermal sensitization following cellular transfer in guinea pigs. J. Allergy 26, 83 (1955).Google Scholar
  210. Cheyiviol, J., and C. Levassort: Actions comparées de l’hypoxie et de la chlorpromazine sur différents types d’hyperthermie. Ann. pharm. franc. 13, 527 (1955).Google Scholar
  211. Chopera, A.: The influence of Marsilid on the temperature response in rats after morphine. Arch. int. Pharmacodyn. 144, 362 (1963).Google Scholar
  212. Cnor, Y. O.: The relationship of glycogen formation in the muscles to the pancreas and to epinephrine. Amer. J. Physiol. 83, 406 (1928).Google Scholar
  213. Cnuistensen, L. K.: Thyroxine-releasing effect of salicylate and of 2,4-Dinitrophenol. Nature (Loud.) 183, 1189 (1959).CrossRefGoogle Scholar
  214. Citron, J., and E. Lescrrcce: Über den Einfluß der Ausschaltung des Zwischenhirns auf das infektiöse und nichtinfektiöse Fieber. Z. exp. Path. Ther. 14, 379 (1913).CrossRefGoogle Scholar
  215. Clark, G.: Temperature regulation in chronic cervical cats. Amer. J. Physiol. 130, 712 (1940).Google Scholar
  216. Clark, G., and L. Borison: Pyrogenic effect of purified staphylococcal enterotoxin. J. Pharmacol. exp. Ther. 142, 237 (1963).PubMedGoogle Scholar
  217. Clark, G., H. W. Magoun and S. W. Ranson: Hypothalamic regulation of body temperature. J. Neurophysiol. 2, 61 (1939).Google Scholar
  218. Clark, S L, and J. E. Proffitt: Effect of citrate on fever response of the rabbit to injection of bacterial pyrogens. Fed. Proc. 13, 27 (1954).Google Scholar
  219. Clarke, E. C., and E. G. Ball: Action of thyroxine on suecinate oxydation. Fed. Proc. 14, 193 (1955).Google Scholar
  220. Claus, CH. O.: Experimentelle Studien über die Temperaturverhältnisse bei einigen Intoxikationen. Diss. Marburg 1872.Google Scholar
  221. Clemente, C. D.: Production of periods of leucocytosis and tolerance by consecutive oral administration of different bacterial pyrogens. Fed. Proc. 10, 27 (1951).Google Scholar
  222. Cloëtta, M.: Gedanken über Fieber und Entfieberung. Schweiz. med. Wschr. 16, 851 (1935).Google Scholar
  223. Cloëtta, M., and E. Waser: Beitrag zur Kenntnis des Fieberanstieges. Naunyn-Schmiedeberg’s Arch. exp.. Path. Pharmak. 73, 436 (1913a).CrossRefGoogle Scholar
  224. Cloëtta, M., and E. Waser: Über die Beziehung zwischen Konstitution und Wirkung beim alizyklischen Tetrahydroß-naphtylamin und seinen Derivaten. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 73, 398 (1913b).CrossRefGoogle Scholar
  225. Cloëtta, M., and E. Waser: Beiträge zur Kenntnis des Fieberanstieges. II. Mitt. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 75, 406 (1914).CrossRefGoogle Scholar
  226. Cloëtta, M., and E. Waser: Über das Adrenalinfieber. (Zur Kenntnis des Fieberanstieges. IV. Mitt.) NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 79, 30 (1915).CrossRefGoogle Scholar
  227. Cloëtta, M., and E. Waser: Über die Beziehungen zwischen Konstitution und Wirkung beim alizyklischen Tetrahydro-ß-Naphthylamin und seinen Derivaten. II. Mitt. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 98, 198 (1923).CrossRefGoogle Scholar
  228. Cloëtta, M., and F. Wünscue: Über die Beziehung zwischen chemischer Konstitution proteinogener Amine und ihrer Wirkung auf Körpertemperatur und Blutdruck. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 96, 307 (1922).CrossRefGoogle Scholar
  229. Cluff, L. E.: Studies of the effect of bacterial endotoxins on rabbit leucocytes. II. Development of acquired resistance. J. exp. Med. 98, 349 (1953).PubMedCrossRefGoogle Scholar
  230. Cluff, L. E.: A study of the effect of serum on the immunological raection of a bacterial endotoxin. J. exp. Med. 103, 439 (1956).PubMedCrossRefGoogle Scholar
  231. Cluff, L. E., and I. L. Bennett: Factors influencing the alteration of the pyrogenic action of endotoxin by serum. Bull. Johns Hopk. Hosp. 101, 281 (1957).Google Scholar
  232. Cluff, L. E., J. H. Mulholland and P. E. Scheder: Acquired tolerance to bacterial endotoxin: the pyrogen augmenting effect of serum. Bull. Johns Hopk. Hosp. 104, 51 (1959).Google Scholar
  233. Collins, R. D., and W. B. Wood: Studies on the pathogenesis of fever. VI. The interaction of leucocytes and endotoxin in vitro. J. exp. Med. 110, 1005 (1959).PubMedCrossRefGoogle Scholar
  234. Collip, J. B., D. L. Thomson and G. Toby: The effect of adrenaline on muscle glykogen in adrenalectomized, thyroidectomized and hypophysectomized rats. J. Physiol. (Lond.) 88, 191 (1936/37).Google Scholar
  235. Comsa, J.: Adrenaline-thyroxin interaction in guinea pigs. Amer. J. Physiol. 161, 550 (1950).Google Scholar
  236. Cooper, K. E., and W. I. Cranston: Clearance of radioactive bacterial pyrogen from the circulation. J. Physiol. (Lond.) 166, 41P (1963).Google Scholar
  237. Cooper, K. E., and W. I. Cranston, and A. J. Honour: Temperature changes induced by 5-HT, noradrenalin and pyrogens injected into the rabbits brain. J. Physiol. (Lond.) 175, 68 P (1964).Google Scholar
  238. Corteggtani, E., and H. Halpern: Action de l’adrénaline et des acides aminés sur la température. Ann Physiol. Physicochim biol. 7, 276 (1931).Google Scholar
  239. Cotui, F. W., D. Hope, M. H. Schrift, J. Powers, A. Wallen and L. Scum=: Purified pyrogen from Eberthella typhosa. A preliminary report on its preparation and its chemical and biological characteristics. J. Lab. clin. Med. 29, 58 (1944).Google Scholar
  240. Cotui, F. W., and M. H. Schrift: The production of pyrogen by some bacteria. J. Lab. clin. Med. 27, 569 (1942a).Google Scholar
  241. Cotui, F. W., and M. H. Schrift: A tenative test for pyrogen in infusion fluids. Proc. Soc. exp. Biol. (N.Y.) 49, 320 (1942b).Google Scholar
  242. Cramer, W.: On sympathetic fever and hyperpyrexial heat-stroke. Brit. J. exp. Path. 1, 31 (1920).Google Scholar
  243. Cramer, W.: Feverinfections and the thyroid-adrenal apparatus. Brit. J. exp. Path. 7, 95 (1926).Google Scholar
  244. Crandell, F.: Inanition fever. Arch. Pediat. 16, 174 (1899).Google Scholar
  245. Cranston, W. I.: Experimental observation on human fever. Need. T. Geneesk. 103, 244 (1959).Google Scholar
  246. Cranston, W. I.: Fever: pathogenesis and circulatory changes. Circulation 20, 1133 (1959).PubMedGoogle Scholar
  247. Cranston, W. I., F. Goodale, E. S. Snell and F. Wendt: The rôle of leucocytes in the initial action of bacterial pyrogens in man. Clin. Sci. 15, 219 (1956).PubMedGoogle Scholar
  248. Crawford, T. B. B.: The distribution of 5-hydroxytryptamine in the central nervous-system of the dog. Aus G. P. LEWIS, 5-Hydroxytryptamine. London-New York-ParisLos Angeles: Pergamon Press 1957.Google Scholar
  249. Cremer, N., and D. W. Watson: Influence of stress on distribution of endotoxin in RES determined by fluorescein antibody technic. Proc. Soc. exp. Biol. (N.Y.) 95, 510 (1957).Google Scholar
  250. Cremer, N., and D. W. Watson: Host-parasite factors in group A streptococcal infections. A comparative study of streptococcal pyrogenic toxins and gram-negative bacterial endotoxins. J. exp. Med. 112, 1037 (1960).PubMedCrossRefGoogle Scholar
  251. Crile, G. W., and A. F. Rowland: Thermo-electric studies of temperature variations in animal tissues. II. Effects of Anesthesia; electrical stimulation; abdominal trauma; exposure of viscera; excision of organs; acid; alkali; strychnin; diphtheria toxin. Amer. J. Physiol. 62, 349 (1922a).Google Scholar
  252. Crile, G. W., and A. F. Rowland: Thermo-electric studies of temperature variations in animal tissues. III. Adrenalin. Amer. J. Physiol. 62, 370 (1922b).Google Scholar
  253. Cushny, A. R.: Die Atropingruppe. In: Handbuch der experimentellen Pharmakologie, Bd. 2/2, S. 39. Berlin: Springer 1924.Google Scholar
  254. Cutting, W. C., and M. L. Tainter: Actions of dinitrophenol. Proc. Soc. exp. Biol. (N.Y.) 29, 1268 (1932).Google Scholar
  255. Dadlez, J., and W. Kosuowsxi: Le quotient respiratoire dans la fièvre périphérique. C. R. Soc. Biol. (Paris) 99, 1032 (1928).Google Scholar
  256. Dadlez, J., and W. Kosuowsxi: Les échanges gazeux dans la fièvre provoquée par le jaune de naphthylamine. C. R. Soc. Biol. (Paris) 100, 1234 (1929a).Google Scholar
  257. Dadlez, J., and W. Kosuowsxi: Les échanges gazeux dans la fièvre peptonique. C. R. Soc. Biol. (Paris) 100, 1236 (1929b).Google Scholar
  258. Dadlez, J., and W. Kosuowsxi: Les échanges gazeux dans la fièvre provoquée par la ß-tétrahyd Ronaphtytamine. C. R. Soc. Biol. (Paris) 100, 1238 (1929c).Google Scholar
  259. Dadlez, J., and W. Kosuowsxi: De quelques effects pharmacodynamiques de la phosphine et des échanges gazeux au cours de la fièvre provoquée par cette substance. C. R. Soc. Biol. (Paris) 102, 92 (1929d).Google Scholar
  260. Dadlez, J., and W. Kosuowsxi: Les critériums biochimiques dans la classification de la fièvre expérimentale. Arch. int. Pharmacodyn. 38, 363 (1930).Google Scholar
  261. Dailey, J. P.: Verfahren zur Herstellung einer stabilen, nicht pyrogenen, intravenös applizierbaren, wäBrigen Fettemulsion. Dtsch. Patentamt: Auslegeschrift 104 9540 (1959).Google Scholar
  262. Dare, J. G.: Some quantitative studies on a bacterial pyrogen. J. Pharm. (Lond.) 5, 528 (1953a).CrossRefGoogle Scholar
  263. Dare, J. G.: Some observations on the B. P. and AND S. P. tests for pyrogens. J. Pharm. (Lond.) 5, 898 (1953b).CrossRefGoogle Scholar
  264. Dare, J. G.: Tests for pyrogens. Pharm. J. 171, 334 (1953c).Google Scholar
  265. Dare, J. G., and G. A. Mogey: Rabbit responses to human threshold doses of bacterial pyrogen. J. Pharm. (Lond.) 6, 325 (1954).CrossRefGoogle Scholar
  266. D’arsonval and Charrin: Topographie calorique chez les animaux fébricitants. C. R. Soc. Biol. (Paris) 48, 277 (1896).Google Scholar
  267. Davies, D. A. L.: The specific polysaccharides of some gram-negative bacteria. Biochem. J. 59, 696 (1955).PubMedGoogle Scholar
  268. Davies, D. A. L.: A specific polysaccharide of Pasteurella pestis. Biochem. J. 63, 105 (1956).PubMedGoogle Scholar
  269. Davies, D. A. L., W. T. J. Viorgan and W. Moslmann: Studies in immunochemistry. 13. Preparation and properties of the 0 somatic antigen of Shigella dysenteriae (Shiga). Biochem. J. 56, 572 (1954).PubMedGoogle Scholar
  270. Davies, D. A. L., and B. R. Record: Studies in immunochemistry. 15. The specific polysaccharide of the dominant 0 somatic antigen of Shigella dysenteriae. Biochem. J. 60, 290 (1955).PubMedGoogle Scholar
  271. Davison, A. N., A. W. Lessin and M. W Parkes: The antagonism of reserpine hypothermia by iproniazid. Experientia (Basel) 13, 329 (1957).CrossRefGoogle Scholar
  272. Dawson, M., and J. P. Todd: The assay of bacterial pyrogens. J. Pharm. (Lond.) 4, 972 (1952).CrossRefGoogle Scholar
  273. Dawson, M., and J. P. Todd: The leucocyte response in the rabbit to pyrogen from proteus vulgaris. I. Mononuclear and temperature responses. J. Pharm. (Lond.) 6, 317 (1954).CrossRefGoogle Scholar
  274. Debré, R., and J. Paraf: La surinfection tuberculeuse chez le cobaye. Diminution rapide du nombre des bacilles dans le sang circulant après surinfection par voie cardiaque. C. R. Soc. Biol. (Paris) 84, 15 (1921).Google Scholar
  275. Dennis, E. W.: Toxicity of acid-soluble typhoid toxin for laboratory animals. Proc. Soc. exp. Biol. (N.Y.) 42, 553 (1939).Google Scholar
  276. Dennis, S. M.: Isolation of a lipopolysaccharide from Vibrio fetus. Nature (Lund.) 183, 186 (1959).CrossRefGoogle Scholar
  277. Dhawan, B. N.: Effect of drugs on LSD-25 induced pyrexia in rabbits. Arch. int. Pharmacodyn. 123, 186 (1959).Google Scholar
  278. Dhawan, B. N.: Blockade of LSD-25 pyrexia by morphine. Arch. int. Pharmacodyn. 127, 307 (1960).Google Scholar
  279. Ding, M.: Beiträge zur Pharmakologie des Ephedrins. Z. exp. Med. 65, 547 (1929).Google Scholar
  280. Dittler, R.: Studien zur Physiologie der Befruchtung. II. Über die allgemeine Stoffwechselwirkung des parenteral zugeführten arteigenen Spermas. Z. Biol. 76, 141 (1922).Google Scholar
  281. Djxksenbaev, O., and N. Ozeretskovsky: On correlation between the adrenocortical response and the febrile reaction following injection of bacterial lipopolysaccharides. Arch. int. Pharmacodyn. 140, 32 (1964).Google Scholar
  282. Dorms, E. C., and G. D. Greville: Acceleration of tissue respiration by nitrophenol. Nature (Loud.) 132, 966 (1933).Google Scholar
  283. Dorms, E. C., and W. C. Pope: Dinitro-o-cresol as a stimulator of metabolism. Lancet 1933 I, 352.Google Scholar
  284. Dorms, E. C., and J. D. Robertson: The clinical application of dinitro-o-cresol. Lancet 1933 II, 1197.Google Scholar
  285. Döblin, A., and P. Fleiscamann: Über die nervöse Regulierung der Körpertemperatur, insbesondere über die Rolle der Nebenniere. Z. klin. Med. 78, 275 (1913).Google Scholar
  286. Doerr, R.: Die Anaphylaxie I. Bd. VI von: Die Immunitätsforschung. Ergebnisse und Probleme in Einzeldarstellungen. Wien: Springer 1950.Google Scholar
  287. Donath, J.: Über fiebererregende Bakterienprodukte. Zbl. allg. Path. path. Anat. 5, 389 (1894).Google Scholar
  288. Donath, J., and G. GARA: Fiebererregende Bakterienprodukte. Wien. med. Wschr. 44, 1342, 1383, 1423 (1894).Google Scholar
  289. Donhoffer, S. Z.: The immediate action of triiodothyronine on the metabolic rate of hyphophysectoxnized, thyroidectomized and intact rats. Acta physiol. Acad. Sci. hung. 10, 131 (1956).Google Scholar
  290. Dorcire, J., M. Carraz, and M. Castaing: Sur la recherche des substances pyrogènes dans les solutés injectables. 5. Origine des propriétés pyrogènes. Eaux distillées et cultures microbiennes. Ann. pharm. franç. 9, 574 (1951).Google Scholar
  291. Doss, D., P. Mtiller-Beisseniiirtz and F. K. Ohnesorge: Mortalität, Körpertemperatur, Sauerstoffverbrauch und Laufleistung von Mäusen nach Metamphetamin unter dem Einfluß verschiedener Umgebungstemperaturen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 250, 348 (1965).CrossRefGoogle Scholar
  292. Drill, V. A.: Pharmacology in medicine, a collaborative textbook. New York: McGraw-Hill Book Comp. 1958.Google Scholar
  293. Dubois, E. F.: The basal metabolism in fever. J. Amer. med. Ass. 77, 352 (1921).CrossRefGoogle Scholar
  294. Dubois, E. F.: Basal metabolism in health and disease. Philadelphia: Lea & Febiger 1936.Google Scholar
  295. Dubois, E. F.: Fever and regulation of body temperature. Springfield, Ill.: Thomas 1948.Google Scholar
  296. Dunos, R. J., R. W. Schaedler and D. Böiime: Effects of bacterial endotoxine on susceptibility to infection with gram-positive and acid-fast bacteria. Fed. Proc. 16, 856 (1957).Google Scholar
  297. Duciiaine, J. P.: Tuberculous bacillaemia in rabbits. 2. Bacillaemia in allergic animals. Amer. Rev. Tuberc. 37, 520 (1938).Google Scholar
  298. Dungern, v.: Über die Hemmung der Milzbrandinfektion durch Friedländersche Bakterien im Kaninchenorganismus. Z. Hyg. Infekt.-Kr. 18, 177 (1894).CrossRefGoogle Scholar
  299. Dunlop, D. M.: The use of 2,4-Dinitrophenol as a metabolic stimulant. Brit. med. J. 1934 I, 524.CrossRefGoogle Scholar
  300. Duschkö, D. M., R. O. Faitelberg, T. P. Gugel-Morosowa and E. J. Sinelnikow: Die Wirkung der Veränderung der Temperatur des Blutes auf die vegetativen Zentren des Zwischenhirns. Fiziol. 2. (Moskau) 17, 513 (1934).Google Scholar
  301. Eddy, N. B., and J. G. Reid: Studies of morphine, codeine and their derivatives. VII. Dihydromorphine (paramorphine), dihydromorphinone (Dilaudid), and dihydrocodeinone (Dicodide). J. Pharmacol. exp. Ther. 52, 468 (1934).Google Scholar
  302. Edelberg, M.: Über die Wirkungen des Fibrinfermentes im Organismus. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 12, 283 (1880).CrossRefGoogle Scholar
  303. Edgren, B.: Intravenöse Fettemulsionen. Dtsch. med. Wschr. 86, 701 (1961).PubMedCrossRefGoogle Scholar
  304. Edsall, G.: Biological actions of dinitrophenol and related compounds. New Engl. J. Med. 211, 385 (1934).CrossRefGoogle Scholar
  305. Egdahl, R. H.: Differential response of the adrenal cortex and medulla to bacterial endotoxin. J. clin. Invest. 38, 1120 (1959).PubMedCrossRefGoogle Scholar
  306. Egdahl, R. H., J. C. Melby and W. W. Spink: Adrenal cortical and body temperature responses to repeated endotoxin administration. Proc. Soc. exp. Biol. (N.Y.) 101, 369 (1959).Google Scholar
  307. Ehrenfest, E., and E. Roxzoxi: Effect of dinitrophenol on oxydation of tissues. Proc. Soc. exp. Biol. (N.Y.) 31, 318 (1933).Google Scholar
  308. Eichenberger, E., and H. Isliker: Das Verhalten des Properdins nach intravenöser Injektion bakterieller Lipopolysaccharide beim Menschen. Heiv. physiol. pharmacol. Acta 14, C 44 (1956).Google Scholar
  309. Eichenberger, E., and B. Friolet: Pharmakologische Beeinflussung des Pyrogen-und LSD-Fiebers des Kaninchens. Hely. physiol. pharmacol. Acta 15, C 60 (1957).Google Scholar
  310. Eichenberger, E., M. Sghmidhauser -Kopp, H. Hurni, M. Friscay and O. Westphal: Biologische Wirkungen eines hochgereinigten Pyrogens (Lipopolysaccharids) aus Salmonella abortus equi. Schweiz. med. Wschr. 85, 1190, 1213 (1955).Google Scholar
  311. Eichenberger, E., and G. Schmidt: Der Einfluß von Polymyxin auf Toxicität, Pyrogenität und leukotaktische Wirkungen eines Endotoxins. Pharm. Acta Heiv. 33, 459 (1958).Google Scholar
  312. Eichler, O., and F. Sebening: Zur Beeinflussung des Jodstoffwechsels der Rattenschilddrüse, geprüft mit Radiojod (131J). Arzneimittel-Forsch. 7, 230 (1957).Google Scholar
  313. Ennis, S.: The metabolic effects of epinephrine and related amines. Pharmacol. Rev. 8, 485 (1956).Google Scholar
  314. Engelhardt-Gölkel, A., C. Hoffmann, E. Kretschmar, R. Nestler and L Schaffry: Stoffwechseluntersuchungen zum Mechanismus der unspezifischen Therapie. Arztl. Forsch. 9, I/432 (1955).Google Scholar
  315. Ernster, L., and O. Lindberg: Animal mitochondria. Ann Rev. Physiol. 20, 13 (1958).CrossRefGoogle Scholar
  316. Erspamer, V., A. Glässer and P. Mantegazzini: Pharmacological action of 4-hydroxytryptamine and 4-hydroxytryptophan. Experienta (Basel) 16, 505 (1960).CrossRefGoogle Scholar
  317. Essax, H. E.: Further observations of certain responses of tolerant and control animals to massive doses of epinephrine. Amer. J. Physiol. 171, 78 (1952).Google Scholar
  318. Estler, C.-J.: Glykogengehalt des Gehirns und Körpertemperatur weißer Mäuse unter dem Einfluß einiger zentral dämpfender und erregender Pharmaka. Med. exp. 4, 209 (1961).PubMedGoogle Scholar
  319. Eulenberg, A., and L. Landois: Über die thermischen Wirkungen experimenteller Eingriffe am Nervensystem und ihre Beziehungen zu den Gefäßnerven. II. Virchows Arch. path. Anat. 68, 245 (1876).Google Scholar
  320. Euler, C. v.: Slow “temperature potentials” in the hypothalamus. J. cell. comp. Physiol. 36, 333 (1950).CrossRefGoogle Scholar
  321. Euler, C. v.: Physiology and pharmacology of temperature regulation. Pharmacol. Rev. 13, 361 (1961).Google Scholar
  322. Euler, C. v., and Söderberg: Co-ordinated changes in temperature thresholds for thermoregulatory reflexes. Acta physiol. scand. 42, 112 (1958).CrossRefGoogle Scholar
  323. Euler, S. v.: Action stimulante du dinitro-a-naphthol, du bleu de methylène et des substances apparentées sur les échanges respiratoires in vivo et in vitro. Arch. int. Pharmacodyn. 43, 67 (1932)Google Scholar
  324. Euler, S., E. Linder and S. O. Myrin: Über die fiebererzeugende Wirkung des Adrenalins. Acta physiol. scand. 5, 85 (1943).CrossRefGoogle Scholar
  325. Eyre, J.: The temperature of the normal guinea-pig. J. Physiol. (Lond.) 25, XXIV (1900).Google Scholar
  326. Falck, C. PH.: Experimentelle Studien zur Beschaffung der Temperaturcurven der akuten Intoxikationen. Virchows Arch. path. Anat. 49, 457 (1870).Google Scholar
  327. Falta, W.: Diskussionsbemerkung. Verh. Dtsch. Ges. inn. Med. 1937, 206.Google Scholar
  328. Fanconi, G., and A. Wallgren: Lehrbuch der Pädiatrie. Basel and Stuttgart: Benno Schwabe & Co. 1958.Google Scholar
  329. Parr, R. S.: The febrile response upon injection of bovine albumin into previously sensitized rabbits. J. clin. Invest. 37, 894 (1958).Google Scholar
  330. Parr, R. S.: A quantitative immunochemical measure of the primary interaction between BSA and antibody. J. infect. Dis. 103, 239 (1958).CrossRefGoogle Scholar
  331. Parr, R. S.: Fever as a manifestation of an experimental allergy. J. Allergy 30, 268 (1959).Google Scholar
  332. Farr, R. S., D. H. Campbell, S. L. Clark and J. E. Proffitt: The febrile response of sensitized rabbits to the intravenous injection of antigen. Anat. Rec. 118, 385 (1954).Google Scholar
  333. Parr, R. S., S. L. Clark and J. E. Proffitt: An interaction of bacterial pyrogen with blood, plasma and serum. Bethesda, Naval Med. Res. Inst. Rep. Proj. N1VI 007 081.12.01 (1953).Google Scholar
  334. Parr, R. S., S. L. Clark and J. E. Proffitt, and D. H. Campbell: Some humoral aspects of the development of tolerance to bacterial pyrogens in rabbits. Amer. J. Physiol. 177, 269 (1954).Google Scholar
  335. Parr, R. S., and V. S. Lequire: Leucocytic and pyrogenic effects of typhoid vaccine and augmentation by homologous plasma. Proc. Soc. exp. Biol. (N.Y.) 75, 661 (1950).Google Scholar
  336. Parr, R. S., and V. S. Lequire, CH. H. Gayuart and P. K. Schorr: The augmentation of the pyrogenic and leucocytic effects of typhoid vaccine by homologous plasma in the rabbit. Naval Med. Res. Inst. Proj. NM 007039 Rep. No 17 (1949).Google Scholar
  337. Farrar, W. E.: Endotoxin detoxification by guinea pig tissue homogenates and possible significance of this reaction. Proc. Soc. exp. Biol. (N.Y.) 118, 218 (1965).Google Scholar
  338. Fastier, F. N., R. N. Speten and H. Waal: Prolongation of chloral hydrate sleeping time by 5-hydroxytryptamine and by certain other drugs. Brit. J. Pharmacol. 12, 251 (1957).PubMedGoogle Scholar
  339. Fastier, L. B.: Toxic manifestations in rabbits and mice associated with the virus of western equine encephalomyelitis. J. Immunol. 68, 531 (1952).PubMedGoogle Scholar
  340. Favorite, G. O., and H. R. Morgan: Effects produced by the intravenous injection in man of a toxic antigenic material derived from Eberthella typhosa: clinical, haematological, chemical and serological study. J. clin. Invest. 21, 589 (1942).PubMedCrossRefGoogle Scholar
  341. Favour, C. B.: Leucocyte blockade of in vitro tuberculin cytolysis. Proc. Soc. exp. Biol. (N.Y.) 70, 369 (1949).Google Scholar
  342. Favour, C. B.: Cell injury in allergic inflammation. Int. Arch. Allergy 10, 193 (1957).PubMedCrossRefGoogle Scholar
  343. Fawcett, J., and W. H. White: On the influence of artifical respiration and of 13-tetrahydronaphtylamine on the body temperature. J. Physiol. (Lond.) 21, 435 (1897).Google Scholar
  344. Feitelberg, S., and H. Lampl: Über die Beeinflussung der Wärmebildung in den verschiedenen Hirnteilen durch Narcotica, Hypnotica und Analeptica. Arch. int. Pharmacodyn. 61, 255 (1939).Google Scholar
  345. Feitelberg, S., and E. P. Pick: The effects of sympatho-and vagomimetic drugs on the heat production in the brain. J. Pharmacol. exp. Ther. 69, 286 (1940).Google Scholar
  346. Feitelberg, S., and E. P. Pick, and A.. Warsberg: Über die zentrale Wärmeerzeugung und Hemmung durch aromatische Amine und Acetylcholin. Arch. int. Pharmacodyn. 61, 447 (1939).Google Scholar
  347. Fukety, F. R.: Heat balance and reactivity to endotoxin. Amer. J. Physiol. 204, 719 (1963).Google Scholar
  348. Feldberg, W., and R. D. Myers: A new concept of temperature regulation by amines in the hypothalamus. Nature (Lond.) 200, 1325 (1963).CrossRefGoogle Scholar
  349. Feldberg, W., and R. D. Myers: Effects on temperature of amines injected into the cerebral ventricles. A new concept of temperature regulation 173, 226 (1964).Google Scholar
  350. Feldmann, J., and E. Gellhorn: The influence of fever on the vago-insulin and sympathetico-adrenal systems. Endocrinology 29, 141 (1941).CrossRefGoogle Scholar
  351. Feri, K.: Zur Wirkung der Antipyretica. Arch. int. Pharmacodyn. 21, 27 (1919).Google Scholar
  352. Fessler, J. H., K. E. Cooper, W. I. Cranston and R. L. Vollum: Observation on the production of pyrogenic substances by rabbit and human leucocytes. J. exp. Med. 113, 1127 (1961).PubMedCrossRefGoogle Scholar
  353. Field, J., A. W. Martin and S. M. Field: Action of 1,2,4-dinitrophenol on yeast respiration and fermentation. Proc. Soc. exp. Biol. (N.Y.) 31, 56 (1933).Google Scholar
  354. Field, J., C. N. Peiss and V. E. Hall: The influence of substances affecting body temperature on oxygen consumption and glycolysis in the brain. Fed. Proc. 7, 33 (1948).Google Scholar
  355. Filehne, W.: In E. BAMBERGER G. R. MÜLLER, Über [3-Tetrahydronaphthylamin. Ber. dtsch. them. Ges. 21, 1112 (1888).Google Scholar
  356. Finkelstein, H.: Über alimentäre Intoxikationen. Jb. Kinderheilk. 68, 693 (1908).Google Scholar
  357. Finkelstein, H.: Über alimentäres Fieber. Dtsch. med. Wschr. 35, 191 (1909).CrossRefGoogle Scholar
  358. Finkler, D.: Über das Fieber. Pflügers Arch. ges. Physiol. 29, 89 (1882).CrossRefGoogle Scholar
  359. Fischer, C.: Diss. Berlin 1903. Mschr. prakt. Tierheilk. 15, 145 (1904).Google Scholar
  360. Fischer, C., E. Paulsson, Handbuch der experimentellen Pharmakologie, Bd. II/1. Berlin: Springer 1920.Google Scholar
  361. Fishgold, J. T., R. GRANT, J. Field and V. C. Hall: Oxygen consumption and glucose changes in vitro of liver slices from febrile rabbits. Amer. J. Physiol. 166, 113 (1951).PubMedGoogle Scholar
  362. Foerster, O.: Über Störungen der Thermoregulation bei Erkrankungen des Rückenmarkes und bei Eingriffen am Zentralnervensystem. Jb. Psychiat. Neurol. 52, 1 (1935).Google Scholar
  363. Folxow, B., G. Stroem and B. Uvnäs: Cutaneous vasodilatation elicited by local heating of the anterior hypothalamus in cats and dogs. Acta physiol. stand. 17, 317 (1949).CrossRefGoogle Scholar
  364. Freedman, H. H.: Passive transfer of protection against lethality of homologous and heterologous endotoxins. Proc. Soc. exp. Biol. (N.Y.) 102, 504 (1959).Google Scholar
  365. Freedman, H. H.: Passive transfer of tolerance to pyrogenicity of bacterial endotoxin. J. exp. Med. 111. 453 (1960a).CrossRefGoogle Scholar
  366. Freedman, H. H.: Reticuloendothelial system and passive transfer of endotoxin tolerance. Ann. N.Y. Acad. Sci. 88, 99 (1960c).CrossRefGoogle Scholar
  367. Freedman, H. H.: Further studies on passive transfer of protection against lethality of endotoxin. Proc. Soc. exp. Biol. (N.Y.) 103, 867 (1960b)Google Scholar
  368. Freedman, H. H.: Further studies on passive transfer of tolerance to pyrogenicity of bacterial endotoxins. The febrile and leucopenic response. J. exp. Med. 112, 619 (1960d).CrossRefGoogle Scholar
  369. Freedman, H. H., and B. M. Sitltzer: Modification of lethality of endotoxin in mice by zymosan. Proc. Soc. exp. Biol. (N.Y.) 106, 495 (1961).Google Scholar
  370. Freedman, H. H., and B. M. Sitltzer: Role of humoral mediator in tolerance to the pyrogenicity of bacterial endotoxin. Proc. Soc. exp. Biol. (N.Y.) 115, 607 (1964a).Google Scholar
  371. Freedman, H. H., and B. M. Sitltzer: Aspects of endotoxin tolerance: phagocytosis specificity. In: Bacterial endotoxins, p. 537. New Brunswick, N.J.: Rutgers University Press 1964b.Google Scholar
  372. Freeman, G. G.: The hydrolytic degradation of the antigenic complex of bact. typhosum Ty 2. Biochem. J. 35, 564 (1941).Google Scholar
  373. Freeman, G. G.: The preparation and properties of a specific polysaccharide from bact. typhosum Ty 2. Biochem. J. 36, 340 (1942).Google Scholar
  374. Freeman, G. G.: The components of the antigenic complex of Salmonella typhimurium. Biochem. J. 37, 601 (1943).PubMedGoogle Scholar
  375. Freeman, G. G., S. W. Challinor and J. Wilson: The use of a synthetic medium in the isolation of the somatic antigens of bact. typhimurium and bact. typhosum. Biochem. J. 34, 307 (1940).PubMedGoogle Scholar
  376. Freeman, G. G., and J. S. L. Phrlpot: The preparation and properties of a specific polysaccharide from bact. typhosum Ty 2. Biochem. J. 36, 340 (1942).Google Scholar
  377. Freeman, W. J., and D. D. Davis: Effects on cats of conductive hypothalamic cooling. Amer. J. Physiol. 197, 145 (1959).Google Scholar
  378. Frei, J., N. Canal and E. Gobi: Novobiocin as uncoupling agent. Experientia (Basel) 14, 377 (1958).CrossRefGoogle Scholar
  379. French, E. L.: The pyrogenic effect of the influenza-mumps group of viruses in the laboratory rabbit. Amt. J. exp. Biol. med. Sci. 30, 479 (1952).CrossRefGoogle Scholar
  380. Frese, J. B.: Experimentelle Beiträge zur Atiologie des Fiebers. Diss. Dorpat 1866.Google Scholar
  381. Freund, H.: Über das Kochsalzfieber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 65, 225 (1911).CrossRefGoogle Scholar
  382. Freund, H.: Über das Wärmestichfieber als Ausdruck des Wärmeregulationsvermögens. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 72, 304 (1913).CrossRefGoogle Scholar
  383. Freund, H.: Pathologie und Pharmakologie der Wärmeregulation. In Handbuch der normalen und pathologischen Physiologie, Bd. 17/III, S. 86. Berlin: Springer 1926.Google Scholar
  384. Freund, H., and E. Grafe: Stoffwechseluntersuchungen beim experimentellen Kochsalzfieber. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 67, 55 (1912a).CrossRefGoogle Scholar
  385. Freund, H., and E. Grafe: Untersuchungen über den nervösen Mechanismus der Wärmeregulation. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 70, 135 (1912b).CrossRefGoogle Scholar
  386. Freund, H., and E. Grafe: Über die Beeinflussung des Gesamtstoffwechsels und des Eiweißumsatzes beim Warmblüter durch operative Eingriffe am Zentralnervensystem. Pflügers Arch. ges. Physiol. 168, 1 (1917).CrossRefGoogle Scholar
  387. Freund, H., and S. Janssen: Über den Sauerstoffverbrauch der Skeletmuskulatur und seine Abhängigkeit von der Wärmeregulation. Pflügers Arch. ges. Physiol. 200, 96 (1923a).CrossRefGoogle Scholar
  388. Freund, H., and S. Janssen: Muskelstoffwechsel und Wärmeregulation. Klin Wschr. 2, 979 (1923b).CrossRefGoogle Scholar
  389. Freund, H., and E. Schlagintweit: Über die Wärmeregulation curarisierter Tiere. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 77, 259 (1914).Google Scholar
  390. Freund, H., and R. Strasman: Zur Kenntnis des nervösen Mechanismus der Wärmeregulation. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 69, 12 (1912).CrossRefGoogle Scholar
  391. Friberger, R.: Untersuchungen über das sog. Salzfieber und über die Chlorausscheidung beim Säugling. Munch. med. Wschr. 56, 1946 (1909).Google Scholar
  392. Friedberger, E.: Über anaphylaktisches Fieber. Verh. dtsch. Kongr. inn. Med. 30, 88 (1913).Google Scholar
  393. Friedberger, E., and S. Mita: Über Anaphylaxie. XVIII. Mitt. Die anaphylaktische Fieberreaktion. Z. Immun.-Forsch. 10, 216 (1911).Google Scholar
  394. Friedman, M. H. F., and I. F. Bennett: The rectal temperature of a group of mongrel dogs. Fed. Proc. 2, 13 (1943).Google Scholar
  395. Frits, T.: Measurement of body temperature of guinea pigs. I. Reaction of normal animals to administration of purified tuberculin and different fluids. Acta path. microbiol. scand. 37, 225 (1955a).Google Scholar
  396. Frits, T.: II. Reaction of BCG vaccinated animals to administration of purified tuberculin. Acta path. microbiol. scand. 37, 233 (1955b).Google Scholar
  397. Friolet, B.: Pharmakologische Beeinflussung des Pyrogen-und LSD-Fiebers beim Kaninchen. Diss. Bern 1959.Google Scholar
  398. Fritze, E., H. H. Schneider and I. Voigt: Zur Wirkung bakterieller Pyrogene bei intravenöser und intrathekaler Injektion. Z. ges. exp. Med. 134, 280 (1961).Google Scholar
  399. From ll el, E., I. T. Beck, F. Vallette and M. Favre: Études dans le domaine de la fièvre. lre communication.: De la potentialisation dc la fièvre dinitrée par les sympathicomimétiques et son lysis par les vagomimétiques. Helv. physiol. pharmacol. Acta 5, 364 (1947a).Google Scholar
  400. From ll el, E., I. T. Beck, F. Vallette and M. Favre: 2e communication: L’influence des substances sympathico-et vagolytiques sur la fièvre dinitrée. Helv. physiol. pharmacol. Acta 5, 376 (1947b)Google Scholar
  401. From ll el, E., I. T. Beck, F. Vallette and M. Favre: 3e communication: L’effet des corps à résultante d’action diencéphalique et encéphalique sur la température dinitrée. Heiv. physiol. pharmacol. Acta 5, 382 (1947c).Google Scholar
  402. From ll el, E., I. T. Beck, F. Vallette and M. Favre: 4e communication: Le facteur cholinergique de la fièvre dinitrée et l’action de la Novocaine sur le lysis. Rely. physiol. pharmacol. Acta 5, 394 (1947d).Google Scholar
  403. From ll el, E., I. T. Beck, F. Vallette and M. Favre: 5e communication: Histamine et fièvre dinitrée. Heiv. physiol. pharmacol, Acta 5, 400 (1947e).Google Scholar
  404. Fromllel, E., I. T. Beck, F. Vallette and M. Favre: De l’action de la nikéthamide (Coramine) sur les centres de la thermorégulation et sur le rendement musculaire. Rely. physiol. pharmacol. Acta 21, 10 (1963).Google Scholar
  405. Fueerman, F. A., and J. Field: Effect of 2,4-dinitrophenol on rat brain at 25 and 37,5° C. Proc. Soc. exp. Biol. (N.Y.) 49, 504 (1942).Google Scholar
  406. Fujino, G.: Über die Wirkung einiger Sympathicusgifte auf die Körpertemperatur, besonders über ihre temperaturerniedrigende Wirkung. Okayama Igakkai Zasshi 44, 36 (1932). Ref. Ber. ges. Physiol. 67, 410 (1932).Google Scholar
  407. Fujitake, N.: Pyrogens IV. Folia pharmacol. jap. 49, 55 (1953). Ref. Chem. Abstr. 48, 6554 (1954).Google Scholar
  408. Fusco, M. M.: Calorimetric measurements of physiological responses of the concious dog to local heating of the anterior hypothalamus. Physiologist 1, 25 (1958).Google Scholar
  409. Fusco, M. M.: A dynamic study of the thermoregulatory responses of the unanesthetized dog to local heating of the hypothalamus. Diss. Univ. of Pennsilvania 1959.Google Scholar
  410. Fusco, M. M., J. D. Hardy, and H. T. Hammel: Interaction of central and peripheral factors in physiological temperature regulation. Amer. J. Physiol. 200, 572 (1961).PubMedGoogle Scholar
  411. Gabriel, E. R., and H. Holmgren: Studies on the blockade of the reticuloendothelial system. Acta path. microbiol. stand. 31, 205 (1952).CrossRefGoogle Scholar
  412. Gangolpiie, M., and J. Courmont: Fièvre consecutive à l’obliteration vasculaire sans intervention microbienne. Arch. Méd. exp. 3, 504 (1891).Google Scholar
  413. Garrey, W. E., and W. R. Bryan: Variations in white blood cell counts. Physiol. Rev. 15, 597 (1935).Google Scholar
  414. Gelluorn, E., and J. Feldman: The influence of the thyroid on the vago-insulin and sympathetico-adrenal systems. Endocrinology 29, 467 (1941).CrossRefGoogle Scholar
  415. Genderen, H., and H. H. M. Diirvttte: Some aspects of the fever-producing action of purified bacterial pyrogens and non-bacterial pyrogens. Acta physiol. pharmacol. neerl. 5, 349 (1956).Google Scholar
  416. Genderen, H., and H. H. M. Diirvttte: The rôle of histamine and serotonin in the production of fever by bacterial pyrogens in rabbits. Acta physiol. pharmacol. neerl. 8, 116 (1959).Google Scholar
  417. Gerbrandy, J., W. I. Cranston and E. S. Snell: The initial process in the action of bacterial pyrogens in man. Clin. Sci. 13, 453 (1954).PubMedGoogle Scholar
  418. German, A.: Les pyrogènes. Ann pharm. franç. 6, 464 (1948).Google Scholar
  419. Giaja, J., and I. N. Dimitrijevic: Étude de la thermorégulation dans la fièvre. Arch. int. Pharmacodyn. 45, 342 (1933).Google Scholar
  420. Giaja, J., and X. Cuaaovitci i: Le quotient métabolique de l’adrénaline. C. R. Soc. Biol. (Paris) 93, 1330 (1925).Google Scholar
  421. Gilbert, R. P.: Mechanisms of the hemodynamic effects of endotoxin. Physiol. Rev. 40, 245 (1960).PubMedGoogle Scholar
  422. Gillman, S. M., L. Bornstein and W. B. Wood: Studies on the pathogenesis of fever. VIII. Further observations on the rôle of endogenous pyrogen in endotoxin fever. J. exp. Med. 114, 729 (1961).PubMedCrossRefGoogle Scholar
  423. Ginger, L. G., N. M. Nesset, B. Riegel and E. J. Fitzsimons: Bacterial pyrogens. II. Pyrogenic preparations from various bacterial species. J. Amer. pharm. Ass. sci. Ed. 40, 421 (1951).Google Scholar
  424. Ginger, L. G., W. F. Windle and I. E. Johnson: Bacterial pyrogens. An annotated bibliography. Baxter Lab. Morton Grove, Illinois, 1952.Google Scholar
  425. Gerard, H.: Influence du cervau sur la chaleur animale et la fièvre. Arch. Psychiat. Nervenkr. 18, 281 (1886).Google Scholar
  426. Githens, T. S.: The influence of ergotoxin on body temperature. J. Pharmacol. exp. Ther. 10, 327 (1917/18).Google Scholar
  427. Glaser, E. M., and P. S. B. Newling: The control of body temperature in thermal balance. J. Physiol. (Lond.) 137, 1 (1957).Google Scholar
  428. Glickman, P. B., R. H. Palmer, and A. Kappas: Steroid fever and inflammation. Arch. intern. Med. 114, 46 (1964).PubMedCrossRefGoogle Scholar
  429. Goebel, W. F., F. Bunkley and E. Perlman: Studies on the Flexner group of dysentery bacilli. I. The specific antigens of Shigella paradysenteriae (Flexner). J. exp. Med. 5, 315 (1945).CrossRefGoogle Scholar
  430. Göing, H.: Beeinflussung der Fieber erzeugenden Wirkung bakterieller Pyrogene durch Iproniacid, Reserpin und Dibenamin. Arzneimittel-Forsch. 9, 793 (1959).Google Scholar
  431. Göing, H.: Die Wirkungsweise von Pyrogenen und bakteriellen Endotoxinen. Klin Wschr. 38, 1070 (1960).CrossRefGoogle Scholar
  432. Göing, H.: Die Wirkungsweise von Pyrogenen und bakteriellen Endotoxinen. Arzneimittel-Forsch. 11, 70 (1961).Google Scholar
  433. Göing, H., and H. Mjcke: Die Bedeutung der vegetativen Zentren und des sympathischen Nervensystems für die Fieber-und Leukocytenreaktion nach bakteriellen Pyrogenen. Z. ges. exp. Med. 133, 386 (1960).Google Scholar
  434. Gogerty, J. H., and J. M. Dille: Tolerance to the pyretogenic effects of lysergic acid diethyl-amide. J. Pharmacol. exp. Ther. 116, 450 (1956).PubMedGoogle Scholar
  435. Göing, H., J. T. Elder and A. Horita: Modifications of actions of LSD-25 by reserpine. Fed. Proc. 16, 300 (1957).Google Scholar
  436. Goldberg, L. I., H. K. Ezell and R. P. Walton: Electrocardiographic and serum potassium changes in fatal hyperthermia. Amer. Heart J. 44, 754 (1952).CrossRefGoogle Scholar
  437. Goldberg, R. C., and I. L. Chaixoff: Failure of dinitrophenol-induced fall in plasma protein-bound iodine to stimulate augmented TSH production. Endocrinology 49, 613 (1951).PubMedCrossRefGoogle Scholar
  438. Goldberg, R. C., J. Wolff and R. O. Greef: Mechanism of depression of plasma protein bound iodine by 2,4-dinitrophenol. Endocrinology 56, 560 (1955).PubMedCrossRefGoogle Scholar
  439. Goltz, F., and I. R. Ewald: Der Hund mit verkürztem Rückenmark. Pflügers Arch. ges. Physiol. 63, 362 (1896).Google Scholar
  440. Gompel, M., and V. Henri: Actions physiologiques de l’argent colloidal. C. R. Soc. Biol. (Paris) 61, 362 (1906).Google Scholar
  441. Gonnard, P.: Cocaine et aminoxydase. J. Physiol. (Paris) 47, 329 (1955).Google Scholar
  442. Goodale, F., E. S. Snell, F. Wendt and W. I. Cranston: Inactivation of a bacterial pyrogen by human serum and plasma. Clin. Sei. 15, 491 (1956).Google Scholar
  443. Gorens, S. W., R. P. Geyer, L. W. Matthews and F. J. Stare: Parenteral Nutrition. X. Observations on the use of a fat emulsion for intravenous nutrition in man. J. Lab. clin. Med. 34, 1627 (1949).Google Scholar
  444. Gottlieb, R.: Experimentelle Untersuchungen über die Wirkungsweise temperaturherabsetzender Arzneimittel. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 26, 419 (1890).CrossRefGoogle Scholar
  445. Gottlieb, R.: Calorimetrische Untersuchungen über die Wirkungsweise des Chinins und Antipyrins. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 28, 167 (1891).CrossRefGoogle Scholar
  446. Gourzis, J. T., M. W. Hollenberg and M. Nickerson: Involvement of adrenergic factors in the effects of bacterial endotoxin. J. exp. Med. 114 593 (1961).PubMedCrossRefGoogle Scholar
  447. Grape, E.: Die pathologische Physiologie des Gesamtstoff-und Kraftwechsels bei der Ernährung des Menschen. Der Stoffwechsel im Fieber. Ergebn. Physiol. 21, 363 (1923).Google Scholar
  448. Grape, E., and E. Gruenthal: Über isolierte Beeinflussung des Gesamtstoffwechsels vom Zwischenhirn aus. Min. Wschr. 1929 I, 1013.Google Scholar
  449. Grant, R.: Nature of pyrogen fever: effect of environmental temperature on response to typhoid-paratyphoid vaccine. Amer. J. Physiol. 159, 511 (1949).PubMedGoogle Scholar
  450. Grant, R.: Emotional hypothermia in rabbits. Amer. J. Physiol. 160, 285 (1950).Google Scholar
  451. Grant, R.: Physiological effects of heat and cold. Ann. Rev. Physiol. 13, 75 (1951).CrossRefGoogle Scholar
  452. Grant, R.: Evidence that changes in blood plasma are responsible for developed refractoriness to bacterial pyrogens. Fed. Proc. 12, 55 (1953a).Google Scholar
  453. Grant, R.: Refractoriness to pyrogens. Effect of incubation of pyrogen with plasma from normal and refractory donors and the responses of refractory recipients. Amer. J. Physiol. 173, 246 (1953b).Google Scholar
  454. Grant, R.: Inhibition of pyrogen-plasma interaction as a possible cause of refractoriness to pyrogens. Fed. Proc. 13, 60 (1954).Google Scholar
  455. Grant, R., and J. D. Hirsch: Pyrogen fever in rabbits. Effect of adrenalectomy. Amer. J. Physiol. 161, 528 (1950).Google Scholar
  456. Grant, R., and J. D. Hirsch: Development of refractoriness to pyrogens in adrenaleetomized rabbits. Amer. J. Physiol. 171, 728 (1952).Google Scholar
  457. Grant, R., and J. D. Hirsch, and B. B. Hirsch: Pyrogen fever in rabbits: Effect of adrenalectomy and thyroidectomy. Fed. Proc. 9, 50 (1950).Google Scholar
  458. Grant, R., J. Lewis and I. Ahrne: Effects of intrahypothalamic injections of pyrogens. Fed. Proc. 14, 16 (1955).Google Scholar
  459. Grant, R., J. Lewis, M. Robbins and V. E. Hall: Effect of environmental temperature on the febrile reaction to typhoid paratyphiod vaccines and other pyrogens. Amer. J. Med. 6, 395 (1949).CrossRefGoogle Scholar
  460. Grant, R., and W. J. Whalen: Latency of response to bacterial pyrogens as affected by previous incubation with blood. Fed. Proc. 11, 58 (1952).Google Scholar
  461. Grant, R., and W. J. Whalen: Latency of pyrogen fever. Appearence of a fast-acting pyrogen in the blood of febrile animals and in plasma incubated with bacterial pyrogen. Amer J Physiol. 173, 47 (1953).PubMedGoogle Scholar
  462. Greisman, S. E., F. A. Carozza and J. D. Hills: Mechanisms of endotoxin tolerance. I. Relationship between tolerance and reticuloendothelial system phagocytic activity in rabbits. J. exp. Med. 117, 663 (1963).PubMedCrossRefGoogle Scholar
  463. Greisman, S. E., R. B. Hornick and F. A. Carozza: The role of endotoxin during typhoid fever and tularemia in man. I. Acquisition of tolerance to endotoxin. J. clin. Invest. 42, 1064 (1963).PubMedCrossRefGoogle Scholar
  464. Greisman, S. E., H. N. WAGNER, M. ho and R. B. HoRNicx: Mechanisms of endotoxin tolerance. II. Relationship between endotoxin tolerance and reticuloendothelial phagocytic activity in man. J. exp. Med. 119, 241 (1964).PubMedCrossRefGoogle Scholar
  465. Greisman, S. E., F. A. Carozza and Tn. E. Woodward: Mechanisms of endotoxin tolerance in man. In: Bacterial endotoxins, p. 567. New Brunswick, N.J.: Rutgers University Press 1964.Google Scholar
  466. Grey, H. M., W. Briggs and R. S. Farr: Passive transfer of sensitivity to antigen-induced fever. Clin. Res. 7, 263 (1959).Google Scholar
  467. Griffith, F. R.: Fact and theory regarding the calorigenic action of adrenaline. Physiol. Rev. 31, 151 (1951).Google Scholar
  468. Gross, J., and S. Pitt- Rivers: Physiological activity of 3,5,3’-L-triiodothyronine. Lancet 1952 I, 593.CrossRefGoogle Scholar
  469. Gnoupé, V., E. C. Herrmann and R. M. Dougherty: Protection of mice from neurotoxic action of influenza virus by “heat inactivated” receptor destroying enzyme. Proc. Soc. exp. Biol. (N.Y.) 87, 636 (1954).Google Scholar
  470. Gruenthal, E., N. Mulholland and F. Strieck: Untersuchungen über den Einfluß des Zwischenhirns auf den respiratorischen Stoffwechsel des Hunden. I. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 145, 35 (1920).CrossRefGoogle Scholar
  471. Günther, TH., H.-J. Dulde and E. Schütte: Einfluß von 2,4-DNP auf die intra-und extracelluläre Elektrolytverteilung in vivo. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 239, 278 (1960a).Google Scholar
  472. Günther, TH., H.-J. Dulde and E. Schütte: Extrarenale Elektrolyt-und Wasserverteilung unter Thyroxin. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 239, 283 (1960b).Google Scholar
  473. Guerra, F., and H. G. Barbour: The mechanism of aspirin antipyresis in monkeys. J. Pharmacol. exp. Ther. 79, 55 (1943).Google Scholar
  474. Guerra, F., and H. G. Barbour: The hypothalamic control of aspirin anti-pyresis in the monkey. J. Pharmacol. exp. Ther. 80, 209 (1944).Google Scholar
  475. Gunne, L. M.: Noradrenaline and adrenaline in the rat brain during acute and chronic morphine administration and during withdrawal. Nature (Lond.).184, 1950 (1959).CrossRefGoogle Scholar
  476. Gunne, L. M.: The temperature response in rats during acute and chronic morphine administration. A study of morphine tolerance. Arch. int. Pharmacodyn. 129, 416 (1960).Google Scholar
  477. Gupta, S. K., M. A. Patel and A. D. Joseph: Effects of chlorpromazine and epinephrine on blood sugar of rabbits. Arch. int. Pharmacodyn. 128, 82 (1960).Google Scholar
  478. Haan, J., and C. Albers: Thermoregulatorische Reaktionen unter Pyrogenwirkung. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 238, 87 (1960).Google Scholar
  479. Haan, J., and A. W. Schmidt: Das Auftreten von endogenem Pyrogen beim fiebernden Kaninchen und seine Beeinflußbarkeit durch Pharmaka. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 246, 33 (1963).Google Scholar
  480. Hackenberg, AND: Statistische Grundlagen zur Messung pyrogener Wirkungen. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 238, 108 (1960).Google Scholar
  481. Haertig, E. W., and J. H. Masseruan: Hypothalamic lesions and pneumonia in cats with notes on behaviour changes. J. Neurophysiol. 3, 293 (1940).Google Scholar
  482. Hagebuscj, O. E., F. J. Robben, M. S. Fleischer and L. Jones: Serum sickness in rabbits. III. Reaction of body temperature and leucocytic curves. J. Immunol. 22, 373 (1932).Google Scholar
  483. Hahn, F.: Unterschiedliche Wirkung von Coramin und Cardiazol auf die Körpertemperatur des Kaninchens. Min Wschr. 21, 460 (1942).CrossRefGoogle Scholar
  484. Hahn, F.: Über den Einfluß einiger Analeptica (Cardiazol, Coramin, Neospiran und Cycliton) auf die Körpertemperatur des normalen und narkotisierten Kaninchens. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 202, 165 (1943).CrossRefGoogle Scholar
  485. Halberg, F., and W. W. Spinx: The influence of Brucella somatic antigen (endotoxin) upon the temperature rhythm of intact mice. Lab. Invest. 5, 283 (1956).Google Scholar
  486. Haley, TH. J., and S. R. Dasgupta: Intracerebral injection of lysergic acid diethylamide in conscious dogs and cats. Arch. int. Pharmacodyn. 113, 296 (1958).Google Scholar
  487. Hall, C. H., and E. Atkins: Studies on tuberculin fever. I. The mechanism of fever in tuberculin hypersensitivity. J. exp. Med. 109, 339 (1959).Google Scholar
  488. Hall, V. E., F. P. Attardo and J. N. Perryman: Influence of dinitrophenol on body temperature threshold for thermal polypnea. Proc. Soc. exp. Biol. (N.Y.) 69, 413 (1948).Google Scholar
  489. J. M. Crismox and P. E. Chamberlin: The influence of cold on the calorigenic action of dinitrophenol. J. Pharmacol. exp. Ther. 59, 193 (1937).Google Scholar
  490. J. Field and R. Grant: The metabolic activity of the central nervous system as it effects the thermostatic behaviour of the body. AND S. Air Force, Air Material Command, Engng. Div. Memorandum Rep. Contract No W 33038, Ser. No MCREX — 696 — 113 D (1948).Google Scholar
  491. J. Field, M. Sahyun, W. C. Cutting and M. L. Tainter: Carbohydrate metabolism, respiration and circulation in animals with basal metabolism heightened by dinitrophenol. Amer. J. Physiol. 106, 432 (1933).Google Scholar
  492. R. Grant, and J. Field: The influence of substances affecting body temperature on thermal polypnea. Fed. Proc. 7, 48 (1948).Google Scholar
  493. R. Grant, and W. J. Whalen: Influence of magnesium and pyrogen on temperature regulation. AND S. Air Force Tech. Dep. No 668/2, Aug. 1951.Google Scholar
  494. Halpern, B. N., G. Biozzi, J. Howard, C. Stiffel and D. Mouton: Exaltation du pouvoir toxique d’Eberthella typhosa tuée chez la souris inoculée avec le BCG vivant. Relation entre cette augmentation de la susceptibilité et l’état fonctionnel du systeme réticulo-endothélial. C. R. Soc. Biol. (Paris) 152, 899 (1958).Google Scholar
  495. Halpern, B. N., P. Liacopoulos, and C. Perez Del Castillo: L’Anaphylaxie expérimentale chez le rat albinos. C. R. Soc. Biol. (Paris) 149, 314 (1955).Google Scholar
  496. Hammel, H. T., M. Fusco and J. D. Hardy: Responses to hypothalamic cooling in concious dogs. Fed. Proc. 18, 63 (1959).Google Scholar
  497. Hammel, H. T., J. D. Hardy and M. M. Fusco: Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Amer. J. Physiol. 198, 481 (1960).Google Scholar
  498. Hammel, H. T., D. C. Jackson, J. A. J. Stolwijr, J. D. Hardy and S. B. Stremme: Thermoregulation by hypothalamic proportional control with an adjustable set point. J. appl. Physiol. 18, 1146 (1963).PubMedGoogle Scholar
  499. Hammel, H. T., and R. O. Rawson: Spontaneous changes in the hypothalamic temperature of the un-anesthetized dog. 22. Int. Congr. Physiol. Sei., Leyden 1962, vol. II, abstr. 487.Google Scholar
  500. Hammer, D., F. Goebel, O. Westphal, K. Sievers and O. Luderitz: Verhalten der Körpertemperatur und des weißen Blutbildes vom Pferd nach Injektion bakterieller Lipopolysaccharide. Z. Naturforsch. 13b, 561 (1958).Google Scholar
  501. Hammerschlag, A.: Über die Beziehungen des Fibrinfermentes zur Entstehung des Fiebers. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 27, 414 (1890).CrossRefGoogle Scholar
  502. Hammouda, M.: The central and the reflex mechanism of panting. J. Physiol. (Loud.) 77, 319 (1933).Google Scholar
  503. Hamosh, M., and B. Shapiro: The mechanism of glycogenolytic action of endotoxin. Brit. J. exp. Path. 41, 372 (1960).PubMedGoogle Scholar
  504. Hamrick, W., and J. D. Myers: The effect of subfebrile doses of bacterial pyrogens on splanchnic metabolism and cardiac output. J. Lab. clin. Med. 45, 568 (1955).PubMedGoogle Scholar
  505. Hannon, J. P., and A. M. Larson: Fatty acid metabolism during norepinephrine — induced thermogenesis in cold-acclimatized rats. Amer. J. Physiol. 203, 1055 (1962).Google Scholar
  506. Harangozo-Oroszy, M. V., and B. V. Issekutz Jr.: Über den Vergleich des Sauerstoffverbrauchs des lebenden und überlebenden Muskels. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 200, 140 (1942/43).Google Scholar
  507. Hardy, J. D.: Physiology of temperature regulation. Physiol. Rev. 41, 521 (1961).PubMedGoogle Scholar
  508. Hardy, J. D.: Homeostatic temperature regulation. 22. Int. Congr. Physiol. Sci., Leyden 1962, vol. I, part I, p. 403.Google Scholar
  509. Hardy, J. D., M. Fusco and H. T. Hammel: Responses of concious dog to local heating of anterior hypothalamus. Physiologist 1, 34 (1958).Google Scholar
  510. Hardy, J. D., R. F. Hellon and K. Sutherland: Temperature-sensitive neurons in the dog’s hypothalamus. J. Physiol. (Lond.) 157, 242 (1964).Google Scholar
  511. Harkness, W. D., W. L. LOVING and F. A. HODGES: Pyrexia in rabbits following the injection of filtrates of typical mold cultures. J. Amer. pharm. Ass., sci. Ed. 39, 502 (1950).Google Scholar
  512. Harkness, W. D., and B. J. Vos: Comparison of the effects of injection of pyrogenic solutions by intravenous and intramuscular routes. J. Amer. pharm. Ass., sci. Ed. 39, 413 (1950).CrossRefGoogle Scholar
  513. Harnack, E., and W. Hochheidi: Über die temperaturerniedrigende Wirkung krampferregender Gifte. Z. klin. Med. 25 (1894).Google Scholar
  514. Harnack, E., and F. Schwegmann: Versuche über den Antagonismus temperaturverändernder Wirkungen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 40, 151 (1898).CrossRefGoogle Scholar
  515. Harris, S., and W. Henle: Lymphocytopenia in rabbits following intravenous injection of influenzae virus. J. Immunol. 59, 9 (1948).PubMedGoogle Scholar
  516. Hart, J. S.: Heat production mechanisms. 22. Int. Congr. Physiol. Sei., Leyden 1962, vol. I, part I, p. 398.Google Scholar
  517. Hartman, J. D.: Demonstration of two systems affecting blood leukocytes in the hypersensitive state with associated inflammation. J. Immunol. 80, 159 (1958).PubMedGoogle Scholar
  518. Hartman, J. D., and W. S. Hoch: Changes in blood leucocytes resulting from an antigen-antibody reaction. Amer. J. Physiol. 183, 214 (1955).Google Scholar
  519. Hartman, J. D., and K. M. Schreck: The in vitro quantitative relationship between two systems affecting blood leukocytes in inflammatory hypersensitivity reactions resulting from different antigens. J. Immunol. 80, 165 (1958).PubMedGoogle Scholar
  520. Hartmann, F. A., J. I. Evans, B. T. Malachowski and L. M. Michalek: Effect of sympathetic nerve stimulation upon the capillaries and fibres of sceletal muscle. Amer. J. Physiol. 85, 99 (1928).Google Scholar
  521. Hartmann, F. A., J. I. Evans, and H. G. Walker: The influence of epinephrin and of the sympathetic system on seeletal muscle fibres and capillaries. Science 65, 236 (1927).CrossRefGoogle Scholar
  522. Hartmann, F. A., J. I. Evans, and H. G. Walker: The action of epinephrin upon the capillaries and fibres of sceletal muscle. Amer. J. Physiol. 85, 91 (1928).Google Scholar
  523. Hartmann, F. A., J. I. Evans, and H. G. Walker: Control of capillaries of sceletal muscle. Amer. J. Physiol. 90, 668 (1929).Google Scholar
  524. Hartwell, J. L., M. J. Shear and J. R. Adams: Chemical treatment of tumors. VII. Nature of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J. nat. Cancer Inst. 4, 107 (1943).Google Scholar
  525. Hasama, B.: Pharmakologische und physiologische Studien über die Schweißzentren. II. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak 146, 129 (1929).CrossRefGoogle Scholar
  526. Hasama, B.: Pharmakologische und physiologische Untersuchungen über die Schweißzentren. IV. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 153, 291 (1930).CrossRefGoogle Scholar
  527. Hashimoto, M.: Fieberstudien. I. Über die spezifische Überempfindlichkeit des Wärmezentrums an sensibilisierten Tieren. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 78, 390 (1915a).Google Scholar
  528. Hashimoto, M.: Fieberstudien. II. Über den Einfluß unmittelbarer Erwärmung und Abkühlung des Wärmezentrums auf die Temperaturwirkungen von verschiedenen pyrogenen und antipyretischen Substanzen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 78, 394 (1915b).CrossRefGoogle Scholar
  529. Hashimoto, M.: Zur Kenntnis der Wärmeregulation. III. Über die Beziehung der Hypophyse zur Wärmeregulation. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 101, 218 (1924).CrossRefGoogle Scholar
  530. Haskins, W. T., M. Landy, K. C. Milner and R. Rim: Biological properties of parent endotoxins and lipid fractions, with a kinetic study of acid-hydrolyzed endotoxin. J. exp. Med. 114, 665 (1961).PubMedCrossRefGoogle Scholar
  531. Hata, S., K. Aoyama, S. Ozawa, F. Miyazawa and M. Ogasawara: Purification of bacterial pyrogenic substances from Pseudomonas aeruginosa, and its clinical applications. Bull. Nat. Hyg. Lab. (Tokyo) 71, 40 (1953). Ref. Chem. Abstr. 49, 7698 (1955).Google Scholar
  532. Hata, S., K. Aoyama, and S. Tanti: Studies on the bacterial pyrogenic substances. Jap. med. J. 3, 125 (1950).Google Scholar
  533. Hauschild, F.: Tierexperimentelles über eine peroral wirksame zentral-analeptische Substanz mit peripherer Kreislaufwirkung. Klin. Wschr. 17, 1257 (1938).CrossRefGoogle Scholar
  534. Hauschild, F.: Atropin und Hyoscyamin, Parkinsonismus. In: Pharmakologie und Grundlagen der Toxikologie. Leipzig: Georg Thieme 1960.Google Scholar
  535. Hauser, N.: Über bakterielle pyrogene Stoffe. Z. Hyg. Infekt.-Kr. 136, 418 (1953a).CrossRefGoogle Scholar
  536. Hauser, N.: Der Nachweis bakterieller pyrogener Stoffe durch intramuskuläre Injektion im Vergleich zur intravenösen im Tierversuch. Arzneimittel-Forsch. 3, 44 (1953b).Google Scholar
  537. Haustein, K.-O.: Zur Pharmakologie des N-d,l-ac-Tetrahydro-ß-naphthyl-N-allyl-ß-alanindiäthylamidhydrochlorids (Vo 07). Arch. int. Pharmacodyn. 128, 500 (1960).Google Scholar
  538. Hegemann, F.: Zur Bedeutung des Blutserums für die Entstehung und das Unwirksam-werden bakterieller Reizstoffe beim Menschen. Z. Immun -Forsch. 111, 213 (1954).Google Scholar
  539. Hegemann, F.: Studien über die Natur des fieberstoffneutralisierenden Faktors im normalen menschlichen Blut. I. Mitt.: Über die Neutralisierung bakterieller Polysaccharide und zur Frage der Immunkörperwirkung. Z. Immun -Forsch. 112, 340 (1955).Google Scholar
  540. Hegemann, F.: II. Mitt.: Die Temperaturempfindlichkeit des neutralisierenden Faktors und die seiner Wirksamkeit. Z. Immun.-Forsch. 113, 386 (1956a).Google Scholar
  541. Hegemann, F.: III. Mitt.: Über die fieberstoffneutralisierende Eigenschaft des menschlichen Blutplasmas und über die Neutralisierung der leukocytenstimulierenden Wirkung bakterieller Endotoxine. Z. Immun.-Forsch. 113, 386 (1956b).Google Scholar
  542. Hegemann, F.: Experimenteller Beitrag zum Properdinproblem. Verh. dtsch. Ges. inn. Med. 62, 327 (1956c).Google Scholar
  543. Hegemann, F.: Studien über die Natur des fieberstoffneutralisierenden Faktors im normalen menschlichen Blut. IV. Mitt.: Der Nachweis der endotoxinneutralisierenden Eigenschaft des menschlichen Blutserums durch den Tierversuch. Z. Immun -Forsch. 114, 1 (1957).Google Scholar
  544. Heidenhain, R.: Über bisher unbeachtete Einwirkungen des Nervensystems auf die Körpertemperatur und den Kreislauf. Pflügers Arch. ges. Physiol. 3, 504 (1870).Google Scholar
  545. Helfrich, L. S.: The effect of morphine sulfate on temperature of various animals. Arch. int. Pharmacodyn. 49, 259 (1935).Google Scholar
  546. Hemingway, A.: The effect of morphine on the skin and rectal temperatures of dogs as related to thermal polypnea. J. Pharmacol. exp. Ther. 63, 414 (1938).Google Scholar
  547. Hemingway, A., T. Rasmussen, H. Wikoff and A. T. Rasmussen: Effects of heating hypothalamus of dogs by diathermy. J. Neurophysiol. 3, 329 (1940).Google Scholar
  548. Henle, G., and W. Henle: Studies on the toxicity of influenza viruses. I. The effect of intracerebral injection of influenza viruses. J. exp. Med. 84, 623 (1946).PubMedCrossRefGoogle Scholar
  549. Henle, W., and G. Henle: II. The effect of intraabdominal and intravenous injection of influenza viruses. J. exp. Med. 84, 639 (1946).PubMedCrossRefGoogle Scholar
  550. Hensel, H.: Mensch und warmblütige Tiere. In W. PRECUT, J. Christgrhersen and H. Hen-Sel, Temperatur und Leben. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  551. Hensel, H.: Physiologie der Thermoreception. Ergebn. Physiol. 47, 166 (1952).Google Scholar
  552. Hensel, H., and F. J. Krueger: Hautdurchblutung der wachen Katze bei Kühlung des vorderen Hypothalamus. Pflügers Arch. ges. Physiol. 268, 72 (1958).Google Scholar
  553. Herion, J. C., R. I. Walker and J. G. Palmer: Relation of leukocyte and fever responses to bacterial endotoxin. Amer. J. Physiol. 199, 809 (1960).Google Scholar
  554. Herion, J. C., R. I. Walker and J. G. Palmer: Endotoxin fever in granulocytopenic animals. J. exp. Med. 113, 1115 (1961).PubMedCrossRefGoogle Scholar
  555. Hermann, H., F. Jourdan, G. Morin and J. Vrar,: Conservation de régulation thermorégulatrice chez le chien a moelle détruite, bistellectomisé, puis bivagotomisé. C. R. Soc. Biol. (Paris) 132, 11 (1939).Google Scholar
  556. Hermann, H., G. Mourn, and P. Galy: Efficacité de la thermorégulation au cours de refroidissement chez les chiens sans moelle. C. R. Soc. Biol. (Paris) 127, 1491 (1938).Google Scholar
  557. Herr, F., J. Borsi and G. Pataky: Wirkung der Umwelttemperatur auf die Toxizität der Analgetica. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 223, 56 (1954).Google Scholar
  558. Herring, W. B., J. C. Herion, R. I. Walker and J. G. Palmer: Distribution and clearance of circulating endotoxin. J. clin. Invest. 42, 79 (1963).PubMedCrossRefGoogle Scholar
  559. Herrmann, J. B.: The pyretic action on rats of small doses of morphine. J. Pharmacol. exp. Ther. 76, 309 (1942).Google Scholar
  560. Herter, K.: Der Temperatursinn der Säugetiere. Beitr. Tierkunde and Tierzucht 3 (1952).Google Scholar
  561. Herzberg, K., and S. Ortel: Liber die Herstellung eines Fieberimpfstoffes. Dtsch. Gesundh. Wes. 3, 300 (1948).Google Scholar
  562. Hess, W. R.: Photogrammatlanten von Stammganglien und Zwischenhirn der Katze. Standardserie 1926, Physiol. Inst. Zürich.Google Scholar
  563. Hess, W. R.: Beiträge zur Physiologie des Hirnstammes. I. Teil. Methodik der lokalisierten Reizung und Ausschaltung subcorticaler Hirnabschnitte. Leipzig: Georg Thieme 1932.Google Scholar
  564. Hess, W. R.: Das Zwischenhirn, S. 39. Basel: Benno Schwabe & Co. 1954.Google Scholar
  565. Hess, W. R. and W. A. Stoll: Experimenteller Beitrag betreffend die Regulierung der Körpertemperatur. Heiv. physiol. pharmacol. Acta 2, 461 (1944).Google Scholar
  566. Heubner, W.: Viper Kochsalzfieber und „Wasserfehier“. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 75, 435 (1914).CrossRefGoogle Scholar
  567. Heusner, A. and Cand H. Marx: Technique d’enregistrement de longue durée de la température centrale chez la rat, libre de ses mouvements. C. R. Soc. Biol. (Paris) 152, 1575 (1958).Google Scholar
  568. Heyman, A., and P. B. Beeson: Influence of various disease states upon the febrile response to intravenous injection of typhoid bacterial pyrogen. J. Lab. clin. Med. 34, 1400 (1949).PubMedGoogle Scholar
  569. Heymans, C.: La tachycardie et la tachypnée pendant l’hyperthermie par le bleu de méthylène. Arch. int. Pharmacodyn. 28, 51 (1924).Google Scholar
  570. Heymans, C., and J. J. Bouckaert: Action hyperthermisante du dinitro-alphanaphtol chez le chien. C. R. Soc. Biol. (Paris) 99, 636 (1928).Google Scholar
  571. Heymans, C., and J. J. Bouckaert: Action hyperthermisante et cardiovasculaire du dinitro-alphanaphtol chez le chien. Arch. int. Pharmacodyn. 35, 63 (1929).Google Scholar
  572. Heymans, C., and E. Maigre: Le bleu de méthylène, corps hyperthermisant. C. R. Soc. Biol. (Paris) 85, 141. (1921).Google Scholar
  573. Heymans, C., and E. Maigre, and P. Regnier: Hyperthermie chez le singe par injection intraveineuse de bleu de méthylène. C. R. Soc. Biol. (Paris) 95, 1117 (1926).Google Scholar
  574. Heymans, J. F.: I. Thermisation du sang carotido-jugulaire chez le lapin. A. Modification de la température. Arch. int. Pharmacodyn. 25, 21 (1921).Google Scholar
  575. Heymans, J. F.: Hyperdéperdition calorique pendant l’hyperthermie par le bleu de méthylène. Arch. int. Pharmacodyn. 27, 319 (1923).Google Scholar
  576. Heymans, J. F., and C. Heymans: Hyperthermie et augmentations du volume respiratoire et de l’élimination de l’anhydride carbonique par le bleu de méthylène. Arch. int. Pharmacodyn. 26, 443 (1922).Google Scholar
  577. Heynigen, W. E. VAN: Recent developments in the field of bacterial toxins. Schweiz. Z. Path. 18, 1018 (1955).Google Scholar
  578. Hildebrand, F.: Der Gasstoffwechsel bei Überhitzung (Kurzwellen, Fango, Solluxlampe) sowie beim künstlichen „Fieber“ (Wärmestich, Pyrifer). Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak 201, 278 (1943).CrossRefGoogle Scholar
  579. Hill, R. M., and E. K. Rutledge: Effect of autolyzed yeast, yeast nucleic acid and related substances on body-temperatures of rats. Proc. Soc. exp. Biol. (N.Y.) 71, 9 (1949a).Google Scholar
  580. Hill, R. M., and E. K. Rutledge: Effects of injection of large molecular and particulate substance on body temperature of rats. Proc. Soc. exp. Biol. (N.Y.) 72, 310 (1949b).Google Scholar
  581. Hilliuiann, G.: Biosynthese und Stoffwechselwirkungen der Schilddrüsenhormone. In: Biochemie und Klinik Stuttgart: Georg Thieme 1961.Google Scholar
  582. Hirsch, C., and O. Müller: Experimentelle Untersuchungen zur Lehre vom Fieber. II. Zur Methodik der thermoelektrischen Temperaturmessung. Dtsch. Arch. klirr Med. 75, 280 (1903).Google Scholar
  583. Hirsch, C., and O. Müller, and F. Rolly: Experimentelle Untersuchungen zur Lehre vom Fieber. I. Einleitung. Über Wärmeproduktion, Wärmeregulation und Fieber. Dtsch. Arch. klirr Med. 75, 264 (1903).Google Scholar
  584. Hirsch, C., and O. Müller, and F. Rolly: Experimentelle Untersuchungen zur Lehre vom Fieber. IV. Zur Wärmetopographie des curarisierten Kaninchens nach Wärmestich. Dtsch. Arch. klirr. Med. 75, 307 (1903).Google Scholar
  585. Hirsch, R.: Anaphylatoxinfieber und Gesamtenergie-und Stoffumsatz. Verh. dtsch. Kongr. inn. Med. 30, 78 (1913).Google Scholar
  586. Höber, R.: Alkali-und Erdalkalimetalle. In Handbuch der experimentellen Pharmakologie, Bd. III/1. Berlin: Springer 1927.Google Scholar
  587. Högyes, A.: Über die Wirkungen einiger Alkaloide auf die Körpertemperatur. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 14, 113 (1881).CrossRefGoogle Scholar
  588. Hoff, F.: Über den Einfluß von Bakterienstoffen auf das Blut. Z. exp. Med. 67, 615 (1929).Google Scholar
  589. Hoff, F.: Unspezifische Therapie und natürliche Abwehrvorgänge. Berlin: Springer 1930.Google Scholar
  590. Hoffman, R. A.: Effect of LSD-25 on body temperature of pigeons. Amer. J. Physiol. 195, 747 (1958).Google Scholar
  591. Hoffman, R. A.: Effect of an interaction between tranquilizers, serotonin and lysergic acid diethylamide on the body temperature of pigeons. Amer. J. Physiol. 195, 751 (1958).Google Scholar
  592. Hoffman, R. A.: Temperature response of the rat to action and interaction of chlorpromazine, reserpine and serotonin. Amer. J. Physiol. 195, 755 (1958).Google Scholar
  593. Hohmann, G.: Studie über Gießfieber. Diss. Würzburg 1903.Google Scholar
  594. Hollister, L. E.: Clinical biochemical and psychological effects of psilocybin. Arch. int. Pharmacodyn. 130, 42 (1961).Google Scholar
  595. Holtkamp, D. E., and A. E. Heivincn: Prevention of thyroxine-induced increased oxygen consumption of rats by concurrent “Dibenzyline” administration. Fed. Proc. 12, 331 (1953).Google Scholar
  596. Hooner, S. B., and E. M. Follensby: Studies on scarlet fever. II. Different toxins produced by hemolytic streptococci of scarlatinal origin. J. Immunol. 27, 177 (1934).Google Scholar
  597. Horita, A.: ß-Phenylisopropylhydrazine, a potent and long acting monoamine oxidase inhibitor. J. Pharmacol. exp. Ther. 122, 176 (1958).PubMedGoogle Scholar
  598. Horita, A., and J. M. Dille: The pyretogenic effect of lysergic acid diethylamide. J. Pharmacol. exp. Ther. 113, 29 (1955).Google Scholar
  599. Horita, A., and J. H. Gogerty: Comparison of pyretogenic action of 5-Hydroxytryptophan (HTP) and lysergic acid diethylamide (LSD). Fed. Proc. 16, 308 (1957).Google Scholar
  600. Horita, A., and J. H. Gogerty: The pyretogenic effect of 5-Hydroxytryptophan and its comparison with that of LSD. J. Pharmacol. exp. Ther. 122, 195 (1958).PubMedGoogle Scholar
  601. Horne, G. O.: Sensitivity to atropine in anhidrotic heat exhaustion. Trans. roy. Soc. trop. Med. Hyg. 48, 153 (1954).PubMedCrossRefGoogle Scholar
  602. Horstmann, P.: The effect of adrenaline on the oxygen consumption in diabetes mellitus and in hyperthyroidism. Acta endocr. (Kbh.) 16, 233 (1954).Google Scholar
  603. Hort, E., and W. J. Penfold: Microorganisms and their relations to fever. J. Hyg. (Loud.) 12, 361 (1912a).CrossRefGoogle Scholar
  604. Hort, E., and W. J. Penfold: The relation of salvarsan fever to other forms of injection fever. Proc. roy. Soc., Med. Part. III, Path. Sect. 5, 131 (1912b).Google Scholar
  605. Howard, J. G., G. Blozzl, B. N. Halpern, C. Stiffel and D. Mouton: Effect of Mycobacterium tuberculosis (BCG) infection on the resistance of mice to bacterial endotoxin and Salmonella enteritidis infection. Brit. J. exp. Path. 40, 281 (1959).PubMedGoogle Scholar
  606. Hsieh, A. C. L., and L. D. Carlson: Rôle of adrenaline and noradrenaline in chemical regulation of heat production. Amer. J. Physiol. 190, 243 (1957).Google Scholar
  607. Hsieh, A. C. L., and L. D. Carlson, and G. Gray: Rôle of the sympathetic nervous system in the control chemical regulation of heat production. Amer. J. Physiol. 190, 247 (1957).Google Scholar
  608. Huinouro, F., and G. Larrain: Studies on morphine. VII. Influence of demethylating drugs on the intensity of some morphine effects. Arch. int. Pharmacodyn. 155, 205 (1965).Google Scholar
  609. Hundeshagen, K.: Die Fiebererzeugung bei Laboratoriumstieren nebst Bemerkungen zur Fiebertherapie. Z. Immun -Forscb. 90, 287 (1937).Google Scholar
  610. Hunt, E. L., and D. J. Kimeldorf: Heart, respiration and temperature measurements in the rat during the sleep state. J. appl. Physiol. 15, 733 (1960).PubMedGoogle Scholar
  611. Hurni, H.: Infektionsresistenz bei Mäusen nach Vorbehandlung mit Lipopolysacchariden. Trans. 6th Congr. European Soc. Haematol. 1957, p. 933.Google Scholar
  612. Ikawa, M., J. B. Koepfli, S. G. Mudd, P. Clark, M. Ferrington and C. Niemann: An agent from E. coli causing hemorrhage and regression of an experimental mouse tumor. I. Isolation and properties. J. nat. Cancer Inst. 13, 157 (1952).PubMedGoogle Scholar
  613. Ingram, W R, C Fisher and R. W. Barries: Effects of lesions in the hypothalamus in cats. Amer. J. Physiol. 109, 57 (1934).Google Scholar
  614. Scovesco, H.: Quelques considérations préliminaires sur l’emploi thérapeutique des métaux colloidaux électriques à petits grains. C. R. Soc. Biol. (Paris) 62, 493 (1907).Google Scholar
  615. Isenschmid, R.: Über das durch Naphthylaminderivate erzeugte Fieber. Munch. med. Wschr. 61, 1756 (1914a).Google Scholar
  616. Isenschmid, R.: Über die Wirkung der die Körpertemperatur beeinflussenden Gifte auf die Tiere ohne Wärmeregulation. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 75, 10 (1914b).CrossRefGoogle Scholar
  617. Isenschmid, R.: Über die Wirkung der die Körpertemperatur beeinflussenden Gifte auf Tiere ohne Wärmeregulation. II. Tetrahydro-ß-Naphthylamin und Schweinerotlaufbazillen, mit Bemerkungen über Adrenalin, Kokain und Coffein. Als Beitrag zur Kenntnis des Stoffwechsels im Fieber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 85, 271 (1920).CrossRefGoogle Scholar
  618. Isenschmid, R.: Über das Wesen und die Bedeutung des Fiebers. Schweiz. med. Wschr. 6, 1173 (1925).Google Scholar
  619. Isenschmid, R.: Physiologie der Wärmeregulation. In: Handbuch der normalen und pathologischen Physiologie, Bd. 17/III, S. 1. Berlin: Springer 1926.Google Scholar
  620. Isenschmid, R., E. Glanzmann, H. Berger and T. Gordonoff: Pharmakotherapie des Fiebers und der fieberhaften Affektionen. Bern and Stuttgart: Hans Huber 1954.Google Scholar
  621. Isenschmid, R., and W. Schnitzler: Beitrag zur Lokalisation des der Wärmeregulation vorstehenden Zentralapparates im Zwischenhirn. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 76, 202 (1914).CrossRefGoogle Scholar
  622. Isenschmid, R.: Unspezifische, humorale Abwehrmechanismen. Schweiz. med. Wschr. 88, 127 (1958).Google Scholar
  623. Issekutz, B. v., M. Leinzinger and B. VON Issekutz: Wirkungsort des Thyroxins. III. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 185, 675 (1937).Google Scholar
  624. Issekutz, B. V.: Die Rolle des Zentralnervensystems und der Schilddrüse bei der Wärmeregulation. Pflügers Arch. ges. Physiol. 238, 737 (1937).Google Scholar
  625. Ito, H.: Über den Ort der Wärmebildung nach Gehirnstich. Z. Biol. 38, 63 (1899).Google Scholar
  626. Jacobj, C.: Über die Beziehungen der Blutdrüsen zu den Lymphräumen, mit besonderer Berücksichtigung der Hypophysis und der Gehirnventrikel als Teile des Wärmeregulationsapparates. Ther. Mh. 25, 291 (1911).Google Scholar
  627. Jacobj, C., and C. Römer: 4. Beitrag zur Erklärung der Wärmestichhyperthermie. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 70, 149 (1912).CrossRefGoogle Scholar
  628. Jacobsen, E.: Die Temperaturwirkung einiger phenylsubstituierter aliphatischer Amine. Skand. Arch. Physiol. 81, 244 (1939).Google Scholar
  629. Jaeger, W., and R. Seraphin: Gefäßreaktionen nach intravenöser Injektion hochgereinigter bakterieller Pyrogene. Albrecht v. Graefes Arch. Ophthal. 158, 449 (1957).Google Scholar
  630. Jandl, J. H., and A. S. Tomlinson: The destruction of red cells by antibodies in man. II. Pyrogenic, leukocytic and dermal responses to immune hemolysis. J. clin. Invest. 37, 1202 (1958).PubMedCrossRefGoogle Scholar
  631. Jelsma, F.: The antagonism between the carotid and vertebral criculation with rapport to the control of heat regulation centers. Amer. J. Physiol. 93, 661 (1930).Google Scholar
  632. Jenkin, C. R., and D. Rowley: The role of opsonins in the clearance of living and inert particles by cells of the reticuloendothelial system. J. exp. Med. 114, 363 (1961).PubMedCrossRefGoogle Scholar
  633. Jenkin, C. R., and D. Rowley: Basis for immunity to typhoid in mice and the question of „cellular immunity“. Bact. Rev. 27, 391 (1963).Google Scholar
  634. Joel, E., and A. Ettinger: Zur Pathologie der Gewöhnung. III. Experimentelle Studien über Morphingewöhnung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 115, 334 (1926).CrossRefGoogle Scholar
  635. Johanovsky, J.: Demonstration of endogenous pyrogen in serum during systemic tuberculin reaction in rabbits. Nature (Loud.) 183, 693 (1959a).CrossRefGoogle Scholar
  636. Johanovsky, J.: The mechanism of the delayed type of hypersensitivity. I. The systemic tuberculin reaction and its passive transfer. Fol. microbiol. Acad. Sci. Bohemoslovenica 4, 101 (1959b).Google Scholar
  637. Johanovsky, J.: II. Demonstration of hypersensitivity on rabbits leucocytes by a staining test in vitro and its relation to the other manifestation of tuberculin hypersensitivity. Fol. microbiol. Acad. Sei. Bohemoslovenica 4, 160 (1959c).CrossRefGoogle Scholar
  638. Johanovsky, J.: IV. The formation of pyrogenic substances during incubation of cells of hypersensitive rabbits with tuberculin in vitro. Fol. microbiol. Acad. Sci. Bohemoslovenica 4, 286 (1959d).CrossRefGoogle Scholar
  639. Johanovsky, J.: Production of pyrogenic substances in the reaction of cells of hypersensitive guinea pigs with antigen in vitro Immunology 3, 179 (1960).Google Scholar
  640. Johnson, R. B., G. Feldott and H. A. Lardy: The mode of action of the antibiotic, usnic acid. Arch. Biochem. 28, 317 (1950).Google Scholar
  641. Jona, J. L.: A contribution to the experimental study of fever. J. Hyg. (Loud.) 15, 169 (1915).CrossRefGoogle Scholar
  642. Jonescu : Pharmakologische Untersuchungen über Tetrahydronaphthylamin. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 60, 345 (1909).CrossRefGoogle Scholar
  643. Jori, A., C. Carrara, S. Paglialunga and S. Garattini: Pharmacological studies on moda-line sulphate. J. Pharm. Pharmacol. (Lond.) 17, 703 (1965).CrossRefGoogle Scholar
  644. Jori, A., and S. Garattini: Interaction between Imipramine-like agents and catecholamineinduced hyperthermia. J. Pharm. Pharmacol. (Loud.) 17, 480 (1965).Google Scholar
  645. Kahn, R. H.: Über die Erwärmung des Carotisblutes. Arch. Physiol. Suppl.-Bd. 1904, 81.Google Scholar
  646. Kaiser, H. K., and W. B. Wood: Studies on the pathogenesis of fever. IX. The production of endogenous pyrogen by polymorphonuclear leucocytes. J. exp. Med. 115, 27 (1962a).CrossRefGoogle Scholar
  647. Kaiser, H. K., and W. B. Wood: Studies on the pathogenesis of fever. X. The effect of certain enzyme inhibitors on the production and activity of leucocytic pyrogen. J. exp. Med. 115, 37 (1962b).Google Scholar
  648. Kanthack, A. A.: Acute leucocytosis produced by bacterial products. Brit. med. J. 1892 I, 1301.Google Scholar
  649. Kappas, A.: Fever producing steroids of endogenous origin in man. 7th Nat. Chem. Symp. Amer. Chem. Soc. Kingston 1960.Google Scholar
  650. P. B. Glickman and R. H. Palmer: Steroid fever studies: physiological differences between bacterial pyrogens and endogenous steroid pyrogens in man. Trans. Ass. Amer. Phycns 73, 176 (1960).Google Scholar
  651. P. B. Glickman and R. H. Palmer, and B. Ratkovits: Physiologic differences between steroid and bacterial pyrogens. J. Lab. clin. Med. 54, 832 (1959).Google Scholar
  652. L. Hellman, D. K. Fukushima and R. F. Gallagher: The pyrogenic effect of etiocholanolone (3a-hydroxyetiocholane-17-one). J. clin. Endocr. 16, 948 (1956).Google Scholar
  653. L. Hellman, D. K. Fukushima and R. F. Gallagher: The pyrogenic effect of etiocholanolone. J. clin. Endocr. 17, 451 (1957).PubMedCrossRefGoogle Scholar
  654. L. Hellman, D. K. Fukushima and R. F. Gallagher: The thermogenic effect and metabolic fate of etiocholanolone in man. J. clin. En-docr. 18, 1043 (1958).Google Scholar
  655. L. Hellman, and R. H. Palmer: Selected aspects of steroid pharmacology. Pharmacol. Rev. 15, 123 (1963).Google Scholar
  656. L. Hellman, and R. H. Palmer, and P. B. Glickman: Steroid fever. Amer. J. Med. 31, 167 (1961).CrossRefGoogle Scholar
  657. L. Hellman, and B. Ratkovits: Species specificity of steroid induced fever. J. clin. Endocr. 20, 898 (1960).CrossRefGoogle Scholar
  658. L. Hellman, W. Sovbel, D. K. Fukusiiima and T. F. Gallagher: Studies on pyrogenic steroids in man. Trans Ass. Amer. Phycns 72, 54 (1959).Google Scholar
  659. L. Hellman, W. Sovbel, P. Glickman and D. K. Fukushima: Fever-producing steroids of endogenous origin in man. Arch. intern. Med. 105, 701 (1960).Google Scholar
  660. Kaufmann, M. M.: Influence exercée par la fièvre sur les actions chimiques intra-organiques et la thermogénèse. C. R. Soc. Biol. (Paris) 10, 773 (1896).Google Scholar
  661. Keene, W. R.: The pathogenesis of fever. Fevers produced by intrathecal injection of endotoxin. Bull. Johns Hopk. Hosp. 99, 103 (1956).Google Scholar
  662. Keene, W. R., M. Landy, M. J. Shear and K. A. Strelecky: Inactivation of endotoxin by a humoral component. VII. Enzymatic degradation of endotoxin by human plasma. J. clin. Invest. 40, 302 (1961).PubMedCrossRefGoogle Scholar
  663. Keene, W. R., H. R. Silberman, M. Landy and K. A. Strelecky: Observation on the pyrogenic response and its application to the bioassay of endotoxin. J. clin. Invest. 40, 295 (1961).PubMedCrossRefGoogle Scholar
  664. Keeton, R. W.: Vaccine fever in rabbits rendered poikilothermous by cervical cord transsection. Amer. J. Physiol. 71, 120 (1924/25).Google Scholar
  665. Keller, A. D., and W. K. Hare: Heat regulation in medullary and in midbrain preparations. Proc. Soc. exp. Biol. (N.Y.) 29, 1067 (1932).Google Scholar
  666. Keller, A. D., and W. K. Hare: The hypothalamus and heat regulation. Proc. Soc. exp. Biol. (N.Y.) 29, 1069 (1932).Google Scholar
  667. Ken, K., E. Araki and T. Maeda: Die autonome Innervation des willkürlichen Muskels und ihre Beziehung zur chemischen Wärmeregulation. Pflügers Arch. ges. Physiol. 225, 372 (1930).Google Scholar
  668. Kerby, G. P.: Release of enzyme from human leucocytes on damage by bacterial derivatives. Proc. Soc. exp. Biol. (N.Y.) 81, 381 (1952).Google Scholar
  669. Kiessig, H.-J.: Untersuchungen über die Wirkungsweise der Sympathicomimetica. VII. liber die temperatursteigernde Wirkung einiger Sympathicomimetica. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 197, 384 (1940).CrossRefGoogle Scholar
  670. Kiliani, M.: Pharmakologische Wertbestimmung der technischen Fiebermittel. Arch. int. Pharmacodyn. 21, 333 (1911).Google Scholar
  671. Killian, H.: Fieber. Munch. med. Wschr. 95, 262 (1953).Google Scholar
  672. Krrm, M. K.: The effects of various endogenous pyrogens on circulating granulocytes. J. Lab. clin. Med. 54, 833 (1959).Google Scholar
  673. Krrm, M. K.: Pathogenesis of fever: effects of various endogenous pyrogens upon the level of circulating granulocytes in normal rabbits. J. exp. Med. 112, 809 (1960).CrossRefGoogle Scholar
  674. Krrm, M. K., and W. B. Woon: Studies on the pathogenesis of fever. III. The leucocytic origin of endogenous pyrogen in acute inflammatory exudates. J. exp. Med. 107, 279 (1958a).CrossRefGoogle Scholar
  675. Krrm, M. K., Production of fever in rabbits with extracts of tissue culture cells infected with Coxsackie virus. J. Lab. clin. Med. 59, 986 (1962).Google Scholar
  676. Krrm, M. K., Pathogenesis of fever in rabbits following intravenous injection of Coxsackie virus. J. Lab. clin. Med. 63, 23 (1964).Google Scholar
  677. Krrm, M. K., IV. The site of action of leucocytic and circulating endogenous pyrogen. J. exp. Med. 107, 291 (1958b).CrossRefGoogle Scholar
  678. Krrm, M. K., V. The relation of circulating endogenous pyrogen to the fever in acute bacterial infections. J. exp. Med. 107, 305 (1958c).CrossRefGoogle Scholar
  679. Krrcaanrmer, W F, A R Hess and R. G. Spears: Attempts of passive transfer of tuberculin type of sensitivity with living granulocytes. Amer. Rev. Tubero. 64, 516 (1951).Google Scholar
  680. Krrcaanrmer, W F, and R. S. Weiser: Tuberculin reaction. I. Passive transfer of tuberculin sensitivity with cells of tuberculous guinea pigs. Proc. Soc. exp. Biol. (N.Y.) 66, 166 (1947).Google Scholar
  681. Krrcaanrmer, W F, and R. S. Weiser, and R. VAN Liew: III. Transfer of systemic tuberculin sensitivity with cells of tuberculous guinea pigs. Proc. Soc. exp. Biol. (N.Y.) 70, 99 (1949).Google Scholar
  682. Kisskalt, K.: Über das Gießfieber und verwandte gewerbiiche Metalldampfinhalationskrankheiten. Z. Hyg. Infekt.-Kr. 71, 472 (1912).CrossRefGoogle Scholar
  683. Klemperer, G.: Die Beziehungen verschiedener Bakteriengifte zur Immunisierung und Heilung. Z. klin Med. 20, 165 (1892).Google Scholar
  684. Klemperer, G. H.: The uncoupling of oxydative phosphorylation in rat liver mitochondria by thyroxine, trijodothyronine and related substances. Biochem. J. 60, 122 (1955).PubMedGoogle Scholar
  685. Klzssruxrs, N., and I. Dosi: Untersuchungen über die Wirkung des Megaphens und des Reserpins auf das Phenylisopropylaminfieber des Kaninchens. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 236, 113 (1959).Google Scholar
  686. Knoll, K. H.: Vergleichende Pyrogenwirksamkeit von Bakterienpolysacchariden pathogener und apathogener Klebsiellastämme. Z. Immun -Forsch. 11. 6, 2 (1958).Google Scholar
  687. Knoppers, A. T., and J. TEN Cate: La glande thyroide, est-elle importante pour Faction hyperthermisante de la tetra-hydro-ß-naplthylamine ? Arch. néerl. Physiol. 27, 133 (1943a).Google Scholar
  688. Knoppers, A. T., and J. TEN Cate: Tetrahydro-ß-naphthylamine et les glandes endocrines. II. l’Hypophyse. Arch. néerl. Physiol. 27, 224 (1943b).Google Scholar
  689. Knoppers, A. T., and J. TEN Cate: Tetrahydro-ß-naphthylamine et les glandes endocrines. III. Les glandes surrénales. Arch. néerl. Physiol. 27, 235 (1943c).Google Scholar
  690. Kobayashi, G. S.. and L. Friedman: False positive pyrogenic responses induced in rabbits by latex particles. Proc. Soc. exp. Biol. (N.Y.) 116, 716 (1964).Google Scholar
  691. Kobayashi, M., N. Fujitake and H. Yamada: A note on the double-peak curve of body temperature induced by pyrogens. Jap. J. Pharmacol. 1, 44 (1951).Google Scholar
  692. Körner, H.: Beiträge zur Temperaturtopographie des Säugetierkörpers. Diss. Breslau 1871.Google Scholar
  693. Kondo, S.: Acta Sch. med. Univ. imp. Kioto 3, 169 (1919).Google Scholar
  694. Kopp, I.: Metabolic rates in therapeutic fever. Amer. J. med. Sci. 190, 491 (1935).CrossRefGoogle Scholar
  695. Kosara, T.: The heat production in the liver. J. orient. Med. 12, 19 (1930).Google Scholar
  696. Kraus, F.: Vasomotoren und Fieber. Wien. klin. Wschr. 11, 229 (1894).Google Scholar
  697. Kreiil, L.: Versuche über die Erzeugung von Fieber bei Tieren. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 35, 22 (1895).Google Scholar
  698. Kreiil, L.: Wesen und Behandlung des Fiebers. Verh. dtseh. Kongr. inn. Med. 30, 26 (1913).Google Scholar
  699. Kreiil, L., and Kratzsch: Untersuchungen über die Orte der erhöhten Wärmeproduktion im Fieber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 41, 184 (1898).Google Scholar
  700. Kreiil, L., and M. Mattes: Wie entsteht die Temperatursteigerung des fiebernden Organismus ? Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 38, 284 (1897).CrossRefGoogle Scholar
  701. Krön, R.: Die intravenöse Schwefeltherapie. Schweiz. med. Wschr. 81, 963 (1951).Google Scholar
  702. Kroneberg, G., and G. H. Kuebjuweit: Die Beeinflussung von experimentellem Fieber durch Reserpin und Sympathicolytica am Kaninchen. Arzneimittel-Forsch. 9, 556 (1959).Google Scholar
  703. Kuv, E.: Effect of bacterial endotoxin on glycogen synthesis. Proc. Soc. exp. Biol. (N.Y.) 68, 496 (1948).Google Scholar
  704. Kuv, E., and L. G. Abood: Mechanism of inhibition of glycogen synthesis by endotoxins of Salmonella aertrycke and type I Meningococcus. Proc. Soc. exp. Biol. (N.Y.) 71, 362 (1949).Google Scholar
  705. Kuv, E., and C. P. Miller: Effect of bacterial endotoxins on carbohydrate metabolism of rabbits. Proc. Soc. exp. Biol. (N.Y.) 67, 221 (1948).Google Scholar
  706. Kung, S., A. O. Edison and Cand BUTZ: A method for large scale testing of pyrogens. J. Amer. pharm. Ass., sci. Ed., 35, 59 (1946).Google Scholar
  707. Kuuisut, M.: Pyrogens. Fol. pharmacol. jap. 49, 69 (1953). Ref. Chem. Abstr. 48, 6554 (1954).Google Scholar
  708. Kym, O.: Die Beeinflussung des durch verschiedene fiebererzeugende Stoffe erregten Temperaturzentrums durch lokale Applikation von Ca, K und Na. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak 176, 408 (1934).CrossRefGoogle Scholar
  709. Lambert, G. F., J. P. Miller and D. V. Frost: Febrile response following intravenous administration of fat. Amer. J. Physiol. 164, 490 (1951).Google Scholar
  710. Landy, M.: Increase in resistence following administration of bacterial lipopolysaccharides. Ann. N.Y. Acad. Sci. 66, 292 (1956).CrossRefGoogle Scholar
  711. Landy, M., and A. G. Jouusn: Studies on the 0 antigen of salmonella typhosa. IV. Endotoxic properties of the purified antigen. Proc. Soc. exp. Biol. (N.Y.) 90, 57 (1955).Google Scholar
  712. Landy, M., and L. Plllemer: Increased resistance to infection and accompanying alteration in properdin levels following administration of bacterial lipopolysaccharides. J. exp. Med. 104, 383 (1956a).CrossRefGoogle Scholar
  713. Landy, M., and M. J. Sh ear: Host responses elicited by polysaccharides of bacterial and mammalian derivation. Fed. Proc. 16, 857 (1957a).Google Scholar
  714. Landy, M., and M. J. Shear: Similarity of host responses elicited by polysaccharides of animal and plant origin and by bacterial endotoxins. J. exp. Med. 106, 77 (1957b).CrossRefGoogle Scholar
  715. Landy, M., and M. J. Shear: Polysaccharides of mammalian derivation. Their biological activities, including interaction with properdin. Tran. 6th Congr. European Soc. Haematology, Copenhagen, 1957c.Google Scholar
  716. A landy, M., R. C. Siarnes, F. S. Rosen, R. J. Trapani and J. Shear: Inactivation of biologically active (“endotoxic”) polysaccharides by fresh human serum. Proc. Soc. exp. Biol. (N.Y.) 96, 744 (1957).Google Scholar
  717. Landy, M., R. J. Trapani and M. J. Shear: Inactivation of endotoxin by a humoral component. IV. Alteration in the immunological properties of typhoid endotoxin. Fed. Proc. 18, 579 (1959).Google Scholar
  718. Langlois, J. P.: Fièvre. Richet’s Diet. Physiol. 6, 423 (1904).Google Scholar
  719. Laszlo, D., and M. Waghsteln: Beitrag zur Wärmeregulation im Fieber. Klin. Wschr. 13, 1568 (1934).CrossRefGoogle Scholar
  720. Laurexz1, A. F.: Apparecchio a registrazione automatica per il controllo dei pirogeni. Boll. chim -farm. 95, 540 (1956).Google Scholar
  721. Leblond, E.: Étude physiologique et thérapeutique de la caféine. Thèse de Paris 1883.Google Scholar
  722. Lechat, P., and D. Deleau: Corticosurrénales et fièvre provoquée par les pyrogènes bactériens. C. R. Soc. Biot (Paris) 155, 2276 (1962).Google Scholar
  723. Lee, R. C.: The rectal temperature of the normal rabbit. Amer. J. Physiol. 125, 521 (1939).Google Scholar
  724. Lefèvre, J.: Chaleur animale et bioénergétique. Paris: Masson & Cie. 1911.Google Scholar
  725. Lehmann, K. B.: Studien über technisch und hygienisch wichtige Gase und Dämpfe. XIV. Das Gieß-oder Zinkfieber. Arch. Hyg. (Berl.) 72, 358 (1921).Google Scholar
  726. Lxminger, A. L.: The action of thyroxine on mitochondria and oxydative phosphorylation. Proc. Internat. Sympos. Enzyme Chem. Tokyo and Kyoto 1957, p. 297Google Scholar
  727. Lxminger, A. L.: Thyroxine and the swelling and contraction cycle in mitochondira. Ann. N.Y. Acad. Sci. 86, 484 (1960).Google Scholar
  728. Lxminger, A. L., and B. L. Ray: Oxydation-reduction state of rat liver mitochondria and the action of thyroxine. Biochim. biophys. Acta 26, 643 (1957).Google Scholar
  729. Leonard, S. L.: Effect of hormones on muscle glycogenolysis in hypophysectomized animals. Amer. J. phys. Med. 34, 297 (1955).PubMedGoogle Scholar
  730. Leonard, S. L., and I. Ringler: Glycogenolytic effects of epinephrine in skeletal muscles of hypophysectomized rats treated with glycopexic hormones. Endocrinology 55, 212 (1954).CrossRefGoogle Scholar
  731. Lequire, V. S.: Augmentation of the thermogenic effects of pyrogens by homologous plasma in rabbits. Naval Med. Res. Inst. Proj. NM 007047 Rep. No 6 (1949).Google Scholar
  732. Lequire, V. S.: The augmentation of the thermogenic effects of pyrogens by homologous plasma in rabbits (including the effect of heparin). J. infect. Dis. 88, 194 (1951).PubMedCrossRefGoogle Scholar
  733. Lesciiiie, E.: Untersuchungen über anaphylaktisches Fieber. Verh. dtsch. Kongr. inn. Med. 30, 80 (1913).Google Scholar
  734. Leuthardt, F., and B. Exer: JYber den Einfluß des Methylenblaus auf die Atmung der Leber-mitochondrion. Rely. chim. Acta 36, 519 (1953).Google Scholar
  735. Levassort, CH.: Action de quelques agents pharmacodynamiques hyperthermisants et hypothermisants sur le métabolisme de base du lapin. J. Physiol. (Paris) 56, 693 (1964).Google Scholar
  736. Leyden, E., and A. Fräikel: Über den respiratorischen Gasaustausch im Fieber. Virchows Arch. path. Anat. 76, 136 (1879).Google Scholar
  737. Liebermeister, C.: Handbuch der Pathologie und Therapie des Fiebers. Leipzig 1875.Google Scholar
  738. LING, C. Y.: The mechanism of reaction of nonspecific protein agents in the treatment of disease. I. The influence of various agents on temperature and leukocyte counts in normal persons and in rabbits. II. The influence of various agents on the mobilization of blood antibodies. III. The influence of various agents on the mobilization of blood enzymes in normal persons and in rabbits. Arch. intern. Med. 35, 598, 790 (1925).Google Scholar
  739. Löffler, W.: TJber Fieber. Schweiz. med. Wschr. 6, 1181 (1925).Google Scholar
  740. Loewi, O.: Pharmakologie des Wärmehaushaltes. Ergebn. Physiol. 3, 332 (1904).Google Scholar
  741. Loewi, O., and O. Weselko: Über den Einfluß der Thyreoidektomie auf die Wärmestichreaktion bei Kaninchen. Zbl. Physiol. 28, 197 (1914).Google Scholar
  742. Logan, R. E., and A. Lein: Time required for metabolic response to single injection of thyroxin. Fed. Proc. 10, 85 (1951).Google Scholar
  743. Lotti, V. J., P. Lomax and R. George: Temperature responses in the rat following intracerebral microinjection of morphine. J. Pharmacol. exp. Ther. 150, 135 (1965).PubMedGoogle Scholar
  744. Lüderitz, O.: Fiebererzeugende Substanzen mit besonderer Berücksichtigung bakterieller Pyrogene. Schriftenreihe WANDER, Reizbeantwortung des Körpers. Bern: Wander 1959.Google Scholar
  745. Lüderitz, O., D. Hammer, F Goebel, K. Sievers and O. Westphal: Die Inaktivierung der endotoxischen Wirksamkeit bakterieller Lipopolysaccharide im Serum, Plasma und Vollblut vom Pferd. Z. Naturforsch. 13 b, 565 (1958).Google Scholar
  746. Lüderitz, O., and O. Westphal: Die Bedeutung von Mutanten bei Enterobacteriaceen für die chemische Erforschung ihrer Zellwand-Polysaccharide. Angew. Chemie (1966) (im Druck).Google Scholar
  747. Lüdre, H.: Über Ursachen und Wirkungen der Fiebertemperatur. Ergebn. inn. Med. Kinderheilk. 4, 493 (1909).Google Scholar
  748. Maass, TH. A.: Stoffwechsel bei Hyperthermien, Fieber. In: Handbuch der Biochemie des Menschen und der Tiere, Erg.-Bd. 3, S. 248. Jena: G. Fischer 1936.Google Scholar
  749. Maclennan, A. P.: Specific lipopolysaccharides of Bordetella. Biochem. J. 74, 398 (1960).Google Scholar
  750. Mager, J., and E. Theodor: Inhibition of mitochondrial respiration and uncoupling of oxydative phosphorylation by fraction of shigella paradysenteriae type III somatic antigen. Arch. Biochem. 67, 169 (1957).Google Scholar
  751. Magne, H., A. Mayer and L. Plantefol: Action pharmacodynamique des phénols nitrés. Un agent augmentant les oxydations cellulaires. Le dinitrophénol 1–2–4 (Thermol). Ann. Physiol. Physicochim. biol. 7, 269 (1931).Google Scholar
  752. Magne, H., A. Mayer and L. Plantefol: Action pharmacodynamique des phénols nitrés. Un agent augmentant les oxydations cellulaires. Le dinitrophénol 1–2–4 (Thermol). Ann. Physiol. Physicochim. biol. 8, 1 (1932a).Google Scholar
  753. Magne, H., A. Mayer and L. Plantefol: Ètudes sur l’action du dinitrophénol 1–2–4 (Thermol). II. Quelques retentissements de l’intoxication mortale par le dinitrophénol 1–2–4 sur les phénomènes généraux de la nutrition. Action sur les reserves de glucides. Ann Physiol. Physicochim. biol. 8, 51 (1932b).Google Scholar
  754. Magne, H., A. Mayer and L. Plantefol: III. L’intoxication non mortelle et l’intoxication chronique par le dinitrophénol 1–2–4. Accoutumance au dinitrophénol. Ann Physiol. Physicochim. biol. 8, 70 (1932c).Google Scholar
  755. Magne, H., A. Mayer and L. Plantefol: VIII. Action pharmacologique des differents phénols nitrés. Comparison de l’intoxication par le dinitrophénol 1–2–4 avec celles que provoquent les autres phénols nitrés. Ann. Physiol. Physicochim. biol. 8, 157 (1932d).Google Scholar
  756. Magnus, R.: Allgemeines über Abführmittel. Anthrachinonderivate, Chrysarobin, Phenolphthalein. In: Handbuch der experimentellen Pharmakologie, Bd. II/2, S. 1592. Berlin: Springer 1924.Google Scholar
  757. Magoun, H. W., F. Harrison, J. R. Brodbeck and S. W. Ranson: Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1, 101 (1938).Google Scholar
  758. Magyary-Kossa, J. v.: Über den Einfluß der Aloe und der Antrachinonderivate auf die Körpertemperatur. Arch. hit. Pharmacodyn. 20, 157 (1910)Google Scholar
  759. Maley, G. F., and H. A. Lardy: Metabolic effects of thyroid hormones in vitro. II. Influence of thyroxine and triiodothyronine on oxydative phosphorylation. J. biol. Chem. 204, 435 (1953).PubMedGoogle Scholar
  760. Mameli, E., and E. Filippi: Azione biotermica delle sostanze organiche. Ann. clin. appl. 16, 556 (1926).Google Scholar
  761. Mann, G. V., R. P. Geyer, D. M. W atrin and F. J. Stare: Parenteral nutrition. IX. Fat emulsions for intravenous nutrition in man. J. Lab. clin. Med. 34, 699 (1949).PubMedGoogle Scholar
  762. Mansfeld, G.: Über das Wesen der chemischen Wärmeregulation. Pflügers Arch. ges. Physiol. 171, 430 (1915).Google Scholar
  763. Mansfeld, G.: Die Wanderung des Thyroxins durch Nerven und ihre Bedeutung für die Katalyse der Zellatmung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 193, 241 (1939).CrossRefGoogle Scholar
  764. Mansfeld, G.: Die Hormone der Schilddrüse und ihre Wirkungen. Basel: Benno Schwabe & Co. 1943.Google Scholar
  765. Mansfeld, G., and E. Meszaros: Weitere Untersuchungen über humorale Übertragbarkeit der chemischen Wärmeregulation. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 196, 590 (1940a).CrossRefGoogle Scholar
  766. Mansfeld, G., and E. Meszaros: Tuber das Nichtvorhandensein einer zentrenlosen Wärmeregulation. Naunyn-Schmicdeberg’s Arch. exp. Path. Pharmak. 196, 609 (1940b).CrossRefGoogle Scholar
  767. Mansfeld, G., F. v. Tyukody and I. Scheff-Pfeifer: Über den Angriffspunkt des Thyroxins. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 181, 376 (1936).CrossRefGoogle Scholar
  768. Mantegazza, P., and M. Riva: Anorexigenic activity of L (-) Dopa in animals pretreated with monoaminoxidase inhibitors. Med. exp. 4, 367–373 (1961).PubMedGoogle Scholar
  769. Maragliano, ED.: Das Verhalten der Blutgefäße im Fieber und bei Antipyrese. Z. klin. Med. 14, 309 (1888); 17, 291 (1890).Google Scholar
  770. Marcus, S., C. Anselmo and J. J. Perkins: Studies on bacterial pyrogenicity. I. Quantitative basis. Proc. Soc. exp. Biol. (N.Y.) 99, 359 (1958).Google Scholar
  771. Marine, D., M. Deutch and A. Cira: Effect of ergotamine tartrate on the heat production of normal and thyroidectomized rabbits. Proc. Soc. exp. Biol. (N.Y.) 24, 662 (1927).Google Scholar
  772. Martin, H., and W. Spielmann: Pyrogenes Material aus normalen Erythrocyten. Klin Wschr. 36, 491 (1958).PubMedCrossRefGoogle Scholar
  773. Martini, E.: Increase of the cathepsin activity of the liver and of the skeletal muscle of rats treated either with 2,4-Dinitrophenol or with bacterial lipopolysaccharide. Experientia (Basel) 15, 182 (1959).CrossRefGoogle Scholar
  774. Martini, P., and FR. Grosse - Brockhoff: Strophanthinwirkung im Fieber. Naunyn- Schmiede-berg’s Arch. exp. Path. Pharmak. 180, 597 (1956).CrossRefGoogle Scholar
  775. Martini, V.: Azione della contenzione e della narcosi sulla ipertermia sperimentale da vaccino e da sostanze chimiche. Arch. int. Pharmacodyn. 48, 366 (1934).Google Scholar
  776. Martini, V., and M. Orunesu: Azione della tetraidronaftilamina (T.I.N.A.) sul contenuto di glicogeno epatico e muscolare e sulla glicemia del ratto. Boll. Soc. ital. Biol. sper. 33, 1682 (1957).PubMedGoogle Scholar
  777. Martini, V., and M. Orunesu: Hepatic cyclophorase activity in rats treated with 1,2,3,4-tetrahydro-ß-naphtylamine (THNA). Experientia (Basel) 15, 331 (1959a).CrossRefGoogle Scholar
  778. Martini, V., and M. Orunesu: In vitro effects of 1,2,3,4-tetrahydro-ß-naphthylamine (THNA) on succinate oxidation by rat liver homogenates. Experientia (Basel) 15, 332 (1959b).CrossRefGoogle Scholar
  779. Martius, C.: Die Stellung des Phyllochinons (Vitamin K1) in der Atmungskette. Biochem. Z. 326, 26 (1954).PubMedGoogle Scholar
  780. Martius, C.: Thyroxin und oxydative Phosphorylierung. 3 e Congr. int. Biochimie, Bruxelles 1955.Google Scholar
  781. Martius, C., and B. Huss: The mode of action of thyroxine. Arch. Biochem. 33, 486 (1951).Google Scholar
  782. Martius, C., and B. Huss: 1 ber den Wirkungsmechanismus des Schilddriisenhormons. Biochem. Z. 326, 191 (1955).PubMedGoogle Scholar
  783. Matakas, F.: Besteht ein Parallelismus zwischen Funktion und Stoffwechsel vegetativer Organe ? Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 162, 395 (1931).CrossRefGoogle Scholar
  784. Matsueda, A.: Experimentelle Untersuchungen über die biologischen Wirkungen des Histamins. VII. Mitt. Tuber die Vergleichungen der Histamin-und der Adrenalinwirkungen auf den Blutzucker und die Körpertemperatur. Okayama Igakkai Zasshi 44, 1016 (1932). Ref. Ber. ges. Physiol. 68, 790 (1932).Google Scholar
  785. May, R.: Der Stoffwechsel im Fieber. Z. Biol. 30, 1 (1893).Google Scholar
  786. Mccabe, W. R.: Tolerance to bacterial endotoxin produced by proliferation of gram negative bacteria in the kidney. Proc. Soc. exp. Biol. (N.Y.) 107, 402 (1961).Google Scholar
  787. Mccabe, W. R.: Endotoxin tolerance. II. Its occurence in patients with pyelonephritis. J. clin. Invest. 42. 618 (1963).PubMedCrossRefGoogle Scholar
  788. Mccabe, W. R., and L. V. Anderson: Endotoxin tolerance. I. Its induction by experimental pyelonephritis. J. clin. Invest. 42, 610 (1963).PubMedCrossRefGoogle Scholar
  789. Mcclosky, W. T., C. W. Price, W. V. Winkle Jr., H. Welch and H. O. Calvery: Results of first ANDS.P. collaborative study of pyrogens. J. Amer. pharm. Ass., sci. Ed. 32, 69 (1943).CrossRefGoogle Scholar
  790. I vicdonald, R. K., V. K. Weise and R. E. Peterson: Effect of aspirin and reserpine on adrenocortical response to piromen in man. Proc. Soc. exp. Biol. (N.Y.) 93, 343 (1956).Google Scholar
  791. Mechanic, R. C., E. Frei, M. Landy and W. W. Smith: Quantitative studies of human leucocytic and febrile response to single and repeated doses of purified bacterial endotoxin. J. clin. Invest. 41, 162 (1962).PubMedCrossRefGoogle Scholar
  792. Meidinger, F.: Action nerveuse du sulfate de phenyl-1-amino-2-propane. C. R. Soc. Biol. (Paris) 128, 748 (1938).Google Scholar
  793. Meier, R., and B. Schar: Weitere Untersuchungen über Bakterienchemotaxine. Experientia (Basel) 9, 93 (1953).CrossRefGoogle Scholar
  794. Meier, R., and B. Schar: Spezifische Wirkung einiger tierischer und bakterieller Polysaccharide auf Leucocyten in vitro. Experientia (Basel) 10, 376 (1954).CrossRefGoogle Scholar
  795. Meier, R., and B. Schar: Vorkommen leukocytotaktischer Polysaccharide in bakteriellem, pflanzlichem und tierischem Ausgangsmaterial. Hoppe-Seylers Z. physiol. Chem. 307, 103 (1957).Google Scholar
  796. Meier, R., and B. Schar: Ähnlichkeit und Unterschied leukocytenemigrationsfördernder Wirkung gram-positiver und gram-negativer Bakterien. Experientia (Basel) 14, 366 (1958).CrossRefGoogle Scholar
  797. Meng, H. C., H. Cress and J. B. Youmans: Effects of intravenous administration of fat emulsion on formed blood elements and body temperature in dogs. Amer. J. Physiol. 187, 107 (1956).Google Scholar
  798. Menkin, V.: Chemical basis of injury in inflammation. Arch. Path. (Chicago) 36, 269 (1943).Google Scholar
  799. Menkin, V.: Chemical basis of fever. Science 100, 337 (1944).PubMedCrossRefGoogle Scholar
  800. Menkin, V.: The significance of biochemical units in inflammatory exudates. Science 101, 422 (1945a).CrossRefGoogle Scholar
  801. Menkin, V.: Chemical basis of fever with inflammation. Arch. Path. (Chicago) 39, 28 (1945b).Google Scholar
  802. Menkin, V.: Chemical factors and their rôle in inflammation. Arch. Path. (Chicago) 41, 376 (1946).Google Scholar
  803. Menkin, V.: Modern concepts of inflammation. Science 105, 538 (1947a).CrossRefGoogle Scholar
  804. Menkin, V.: Biochemistry of inflammation. Lancet 1947 Ib, 660.Google Scholar
  805. Menkin, V.: Newer concepts of inflammation. Springfield: Ill. Ch. C. Thomas 1950a.Google Scholar
  806. Menkin, V.: Dynamics of inflammation. New York: MacMillan Co. 1950b.Google Scholar
  807. Menkin, V.: Studies on the crystallization of pyrexin, the pyrogenic factor of inflammatory exsudates. Arch. int. Pharmacodyn. 89, 229 (1952).Google Scholar
  808. Menkin, V.: Modern views on inflammation. Internat. Arch. Allergy 4, 131 (1953).Google Scholar
  809. Menkin, V.: Pyrexin and its relation to a bacterial pyrogen. Fed. Proc. 13, 439 (1954).Google Scholar
  810. Menkin, V.: Pyrexin, the pyrogenic factor of inflammatory exudates, and its relation to some bacterial pyrogens. J. Lab. clip. Med. 46, 423 (1955).Google Scholar
  811. Menkin, V.: Biochemical mechanisms in inflammation. Springfield/Ill.: Ch. C. Thomas 1956a.Google Scholar
  812. Menkin, V.: Biochemische Gesichtspunkte der Entzündung. Medizinische 15, 557 (1956b).Google Scholar
  813. Menkin, V.: Biology of inflammation. Chemical mediators and cellular injury. Science 123, 527 (1956c).CrossRefGoogle Scholar
  814. Menkin, V.: Pyrexin and the pathogenesis of fever. Lancet 1958 II, 851.CrossRefGoogle Scholar
  815. Menkin, V.: Biochemical mechanisms in inflammation. Brit. med. J. 1960 I, 1521.CrossRefGoogle Scholar
  816. Mergenhagen, S. E., G. R. Martin and E. Schiffmann: Studies on an endotoxin of a group C Neisseria meningitidis. J. Immunol. 90, 312 (1963).PubMedGoogle Scholar
  817. Merler, E., A. Perrault, R. J. Trapani, M. Landy and M. J. Shear: Absence of endotoxic activity in materials derived without bacterial contamination from mammalian tissue. Proc. Soc. exp. Biol. (N.Y.) 105, 443 (1960).Google Scholar
  818. Meyer, H. H.: Theorie des Fiebers und seiner Behandlung. Verh. dtsch. Kongr. inn. Med. 30, 15 (1913).Google Scholar
  819. Meyer, H. H.: Die Wärmeregulation im menschlichen Körper. Naturwissenschaften 8, 751 (1920).CrossRefGoogle Scholar
  820. Meyer, H. H.: Zur Lehre der Wärmeregulation. Klin Wschr. 1935 II, 962.CrossRefGoogle Scholar
  821. Meyer, H. H.: Pharmakologie des Wärmehaushaltes. In H. H. MEYER and R. GOTTLIEB, Die experimentelle Pharmakologie als Grundlage der Arzneibehandlung. Berlin and Wien: Urban & Schwarzenberg 1936.Google Scholar
  822. Meyer, L. F.: Experimentelle Untersuchungen zum alimentären Fieber. Dtsch. med. Wschr. 35, 196 (1909).Google Scholar
  823. Meyer, M. W., and H. M. Ballila: Failure to observe alteration of epinephrine activity after endotoxin. Proc. Soc. exp. Biol. (N.Y.) 100, 288 (1959).Google Scholar
  824. Michel, R: Thyroid. Ann. Rev. Physiol. 18, 457 (1956).Google Scholar
  825. Miles, A. A., and N. W. Pirie: The properties of antigenic preparations form Brucella Inelitensis. I. Chemical and physical properties of bacterial fractions. Brit. J. exp. Path. 20, 83 (1939a).Google Scholar
  826. Miles, A. A., and N. W. Pirie: III. The biological properties of the antigen and the products of gentle hydrolysis. Brit. J. exp. Path. 20, 278 (1939b).Google Scholar
  827. Millberger, H., V. V. Brand, K. Gehrmann and L. Tauscher: Ein Modellversuch für das Studium des cyclischen Infektionsgeschehens und allergischer Erkrankungen. Zbl. Bakt., I. Abt. 154, 167 (1949).Google Scholar
  828. Mitchell, S. Q.: Numerical changes in circulating leucocytes in normal and chronically adrenalectomized cats after adminsitration of Pyromen. Amer. Physiol. Soc. Meetings New Orleans, Sept. 4–6, 1952.Google Scholar
  829. Molitor, H., M. E. Gundel, S. Kuna and W. H. Ott: Studies on pyrogens. II. Some factors influencing the evaluation of pyrogen tests. J. Amer. pharm. Ass., sci. Ed. 35, 356 (1946).Google Scholar
  830. Monakow, C. v.: Gehirnpathologie. In H. Nothnagels Spezielle Pathologie und Therapie, Bd. IX, S. 1. Wien 1905.Google Scholar
  831. Money, W. L., S. Kumaoka, R. W. Rawson and R. L. Kroc: Comparative effects of thyroxine analogues in experimental animals. Ann. N.Y. Acad. Sci. 86, 512 (1960).PubMedCrossRefGoogle Scholar
  832. Monto, Ho, and E. H. Kass: Protective effect of components of normal blood against the lethal action od endotoxin. J. Lab. clin. Med. 51, 297 (1958).Google Scholar
  833. Moon, V. H., and G. A. Tershakovec: Dynamics of inflammation and repair. V. The phenomena of leucocytosis and fever. Arch. Path. (Chicago) 58, 285 (1954).Google Scholar
  834. Moore, L. M.: Experimental studies on the regulation of body temperature. I. Normal temperature variation and the temperature effects of operative procedures. Amer. J. Physiol. 46, 244 (1918a).Google Scholar
  835. Moore, L. M.: Experimental studies on the regulation of body temperature. II. Relation of the corpus striatum to the regulation of body temperature. Amer. J. Physiol. 46, 253 (1918b).Google Scholar
  836. Moore, L. M.: Experimental studies on the regulation of body temperature. III. The effect of increased intracranial pressure on body temperature. Amer. J. Physiol. 50, 102 (1919/20).Google Scholar
  837. Moraes, A., and H. Caster: Phosphogène, glutathion et hyperthermie par le dinitro-alphanaphtol sodique chez le pigeon. Arch. int. Pharmacodyn. 45, 113 (1933).Google Scholar
  838. Morgan, H. R.: Preparation of an antigenic material inducing leucopenia from Eberthella typhosa in a synthetic medium. Proc. Soc. exp. Biol. (N.Y.) 43, 529 (1940).Google Scholar
  839. Morgan, H. R.: Immunologic properties of an antigenic material isolated from Eberthella typhosa. J. Immunol. 41, 161 (1941).Google Scholar
  840. Morgan, H. R.: Tolerance to the toxic action of somatic antigens of enteric bacteria. J. Immunol. 59, 129 (1948a).Google Scholar
  841. Morgan, H. R.: Resistance to the endotoxins of enteric bacilli in man. J. clin. Invest. 27, 706 (1948b).CrossRefGoogle Scholar
  842. Morgan, H. R., and F. A. Neva: Tolerance to the toxic effects of somatic antigens of enteric bacilli in typhoid and paratyphoid fever convalescents. J. clin. Invest. 28, 800 (1949).Google Scholar
  843. Morgan, L. O: Cell-change in some of the hypothalamic nuclei in experimertal fever. J. Neurophysiol. 1, 281 (1938).Google Scholar
  844. Morgan, W. T. J.: Studies in immunochemistry. II. The isolation and properties of a specific antigenic substance from B. dysenteriae (Shiga). Biochem. J. 31, 2003 (1937).PubMedGoogle Scholar
  845. Morgan, W. T. J., and S. M. Partridge: IV. The fractionation and nature of antigenic material isolated from Bact. dysenteriae (Shiga). Biochem. J. 34, 169 (1940).PubMedGoogle Scholar
  846. Morgan, W. T. J., and S. M. Partridge: VI. The use of phenol and alkali in the degradation of antigenic material isolated from Bact. dysenteriae (Shiga). Biochem. J. 35, 1140 (1941).PubMedGoogle Scholar
  847. Morgan, W. T. J., and S. M. Partridge: An examination of the 0 antigenic complex of Bact. typhosum. Brit. J. exp. Path. 23, 151 (1942).Google Scholar
  848. Morita, S.: Untersuchungen über die zuckertreibende Wirkung adrenalinähnlicher (sympathomimetischer) Substanzen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 78, 245 (1915).CrossRefGoogle Scholar
  849. Morita, S., and M. Naito: The blood sugar content of the heat-punctured rabbit. Tôhoku J. exp. Med. 2, 562 (1922).Google Scholar
  850. Mosengeil, K. v.: Beobachtungen über örtliche Wärmeentwicklung bei Entzündungen. Langenbecks Arch. klin. Chir. 13, 70 (1872).Google Scholar
  851. Moses, J. M., and E. Atkins: Studies on tuberculin fever. II. Observation on the role of endogenous pyrogen in tolerance. J. exp. Med. 114, 939 (1961).PubMedCrossRefGoogle Scholar
  852. Moses, J. M., R. H. Ebert, R. G. Graham and K. L. Brine: Pathogenesis of inflammation. I. The production of an inflammatory substance from rabbit granulocytes in vitro and its relationship to leucocyte pyrogen. J. exp. Med. 120, 57 (1964).PubMedCrossRefGoogle Scholar
  853. Mosso, AND: Die Lehre vom Fieber in bezug auf die zentralen Wärmezentren. Studie über die Wirkung der Antipyretica. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 26, 316 (1890).CrossRefGoogle Scholar
  854. Mueller, E. F.: Precision resistance thermometry in temperature, its measurement and control in science and industry. New York: Reinhold Publ. Corp. 1941.Google Scholar
  855. Muschel, L. H., and J. E. Jackson: A humoral antibody associated with endotoxin resistance. Proc. Soc. exp. Biol. (N.Y.) 116, 182 (1964).Google Scholar
  856. Mutch, N., and M. S. Peibrey: The influence of tetrahydro-ß-naphthylamine upon the temperature and respiratory exchange. J. Physiol. (Loud.) 43, 109 (1911).Google Scholar
  857. Nacke, O.: Über die Verwendung von Mäusen zur Prüfung pyretischer and antipyretischer Substanzen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 214, 147 (1952).Google Scholar
  858. Nagayama, T.: Experimentelle Studien über die Perspiratio insensibilis and den respiratorischen wechsel. IV. Mitt. Über den Einfluß der Antipyretica and Hypnotica auf die Perspiratio;nsens ilis and den respiratorischen Gaswechsel. Okayama Igakkai Zasshi 44, 2630 (1932). 1L I Ber. ges. Physiol. 72, 465 (1933).Google Scholar
  859. Naito, Y.: Studies on the pyrogenic effect of tubercular matters. II. Effect of somatic proteins on normal and tuberculous rabbits. Ann. Tuberc. (Tenri)Google Scholar
  860. Isenschmid, R.: Über die Wirkung der die Körpertemperatur beeinflussenden Gifte auf Tiere ohne Wärmeregulation. II. Tetrahydro-ß-Naphthylamin und Schweinerotlaufbazillen, mit Bemerkungen über Adrenalin, Kokain und Coffein. Als Beitrag zur Kenntnis des Stoffwechsels im Fieber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 85, 271 (1920).CrossRefGoogle Scholar
  861. Isenschmid, R.: Über das Wesen und die Bedeutung des Fiebers. Schweiz. med. Wschr. 6, 1173 (1925).Google Scholar
  862. Isenschmid, R.: Physiologie der Wärmeregulation. In : Handbuch der normalen und pathologischen Physiologie, Bd. 17/III, S. 1. Berlin: Springer 1926.Google Scholar
  863. Isenschmid, R., E. Glanzmann, H. Berger and T. Gordonoff: Pharmakotherapie des Fiebers und der fieberhaften Affektionen. Bern and Stuttgart : Hans Huber 1954.Google Scholar
  864. Isenschmid, R., and W. Schnitzler : Beitrag zur Lokalisation des der Wärmeregulation vorstehenden Zentralapparates im Zwischenhirn. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 76, 202 (1914).CrossRefGoogle Scholar
  865. Isenschmid, R.: Unspezifische, humorale Abwehrmechanismen. Schweiz. med. Wschr. 88, 127 (1958).Google Scholar
  866. Issekutz, B. v., M. Leinzinger and B. VON Issekutz jr.: Wirkungsort des Thyroxins. III. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 185, 675 (1937).Google Scholar
  867. Issekutz, B. v.: Die Rolle des Zentralnervensystems und der Schilddrüse bei der Wärmeregulation. Pflügers Arch. ges. Physiol. 238, 737 (1937).Google Scholar
  868. Ito, H.: Über den Ort der Wärmebildung nach Gehirnstich. Z. Biol. 38, 63 (1899).Google Scholar
  869. Jacobj, C.: Über die Beziehungen der Blutdrüsen zu den Lymphräumen, mit besonderer Berücksichtigung der Hypophysis und der Gehirnventrikel als Teile des Wärmeregulationsapparates. Ther. Mh. 25, 291 (1911).Google Scholar
  870. Jacobj, C., and C. Römer: 4. Beitrag zur Erklärung der Wärmestichhyperthermie. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 70, 149 (1912).CrossRefGoogle Scholar
  871. Jacobsen, E.: Die Temperaturwirkung einiger phenylsubstituierter aliphatischer Amine. Skand. Arch. Physiol. 81, 244 (1939).Google Scholar
  872. Jaeger, W., and R. Seraphin: Gefäßreaktionen nach intravenöser Injektion hochgereinigter bakterieller Pyrogene. Albrecht v. Graefes Arch. Ophthal. 158, 449 (1957).Google Scholar
  873. Jandl, J. H., and A. S. Tomlinson: The destruction of red cells by antibodies in man. II. Pyrogenic, leukocytic and dermal responses to immune hemolysis. J. clin. Invest. 37, 1202 (1958).PubMedCrossRefGoogle Scholar
  874. Jelsma, F.: The antagonism between the carotid and vertebral criculation with rapport to the control of heat regulation centers. Amer. J. Physiol. 93, 661 (1930).Google Scholar
  875. Jenkin, C. R., and D. Rowley: The role of opsonins in the clearance of living and inert particles by cells of the reticuloendothelial system. J. exp. Med. 114, 363 (1961).PubMedCrossRefGoogle Scholar
  876. Jenkin, C. R., and D. Rowley: Basis for immunity to typhoid in mice and the question of „cellular immunity“. Bact. Rev. 27, 391 (1963).Google Scholar
  877. Joel, E., and A. Ettinger: Zur Pathologie der Gewöhnung. III. Experimentelle Studien über Morphingewöhnung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 115, 334 (1926).CrossRefGoogle Scholar
  878. Johanovsky, J.: Demonstration of endogenous pyrogen in serum during systemic tuberculin reaction in rabbits. Nature (Loud.) 183, 693 (1959a).CrossRefGoogle Scholar
  879. Johanovsky, J.: The mechanism of the delayed type of hypersensitivity. I. The systemic tuberculin reaction and its passive transfer. Fol. microbiol. Acad. Sci. Bohemoslovenica 4, 101 (1959b).CrossRefGoogle Scholar
  880. Johanovsky, J.: II. Demonstration of hypersensitivity on rabbits leucocytes by a staining test in vitro and its relation to the other manifestation of tuberculin hypersensitivity. Fol. microbiol. Acad. Sei. Bohemoslovenica 4, 160 (1959c).CrossRefGoogle Scholar
  881. Johanovsky, J.: IV. The formation of pyrogenic substances during incubation of cells of hypersensitive rabbits with tuberculin in vitro. Fol. microbiol. Acad. Sci. Bohemoslovenica 4, 286 (1959d).CrossRefGoogle Scholar
  882. Johanovsky, J.: Production of pyrogenic substances in the reaction of cells of hypersensitive guinea pigs with antigen in vitro Immunology 3, 179 (1960).PubMedGoogle Scholar
  883. Johnson, R. B., G. Feldott and H. A. Lardy: The mode of action of the antibiotic, usnic acid. Arch. Biochem. 28, 317 (1950).Google Scholar
  884. Jona, J. L.: A contribution to the experimental study of fever. J. Hyg. (Loud.) 15, 169 (1915).CrossRefGoogle Scholar
  885. Jonescu : Pharmakologische Untersuchungen über Tetrahydronaphthylamin. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 60, 345 (1909).CrossRefGoogle Scholar
  886. Jori, A., C. Carrara, S. Paglialunga and S. Garattini: Pharmacological studies on moda-line sulphate. J. Pharm. Pharmacol. (Lond.) 17, 703 (1965).CrossRefGoogle Scholar
  887. Jori, A., and S. Garattini: Interaction between Imipramine-like agents and catecholamineinduced hyperthermia. J. Pharm. Pharmacol. (Loud.) 17, 480 (1965).Google Scholar
  888. Kahn, R. H.: Über die Erwärmung des Carotisblutes. Arch. Physiol. Suppl.-Bd. 1904, 81.Google Scholar
  889. Kaiser, H. K., and W. B. Wood: Studies on the pathogenesis of fever. IX. The production of endogenous pyrogen by polymorphonuclear leucocytes. J. exp. Med. 115, 27 (1962a).CrossRefGoogle Scholar
  890. Kaiser, H. K., and W. B. WOOD: Studies on the pathogenesis of fever. X. The effect of certain enzyme inhibitors on the production and activity of leucocytic pyrogen. J. exp. Med. 115, 37 (1962b).Google Scholar
  891. Kanthack, A. A.: Acute leucocytosis produced by bacterial products. Brit. med. J. 1892 I, 1301.Google Scholar
  892. Kappas, A.: Fever producing steroids of endogenous origin in man. 7th Nat. Chem. Symp. Amer. Chem. Soc. Kingston 1960.Google Scholar
  893. P. B. Glickman and R. H. Palmer: Steroid fever studies: physiological differences between bacterial pyrogens and endogenous steroid pyrogens in man. Trans. Ass. Amer. Phycns 73, 176 (1960).Google Scholar
  894. P. B. Glickman and R. H. Palmer, and B. Ratkovits: Physiologic differences between steroid and bacterial pyrogens. J. Lab. clin. Med. 54, 832 (1959).Google Scholar
  895. L. Hellman, D. K. Fukushima and R. F. Gallagher: The pyrogenic effect of etiocholanolone (3a-hydroxyetiocholane-17-one). J. clin. Endocr. 16, 948 (1956).Google Scholar
  896. L. Hellman, D. K. Fukushima and R. F. Gallagher: The pyrogenic effect of etiocholanolone. J. clin. Endocr. 17, 451 (1957).PubMedCrossRefGoogle Scholar
  897. L. Hellman, D. K. Fukushima and R. F. Gallagher: The thermogenic effect and metabolic fate of etiocholanolone in man. J. clin. En-docr. 18, 1043 (1958).Google Scholar
  898. L. Hellman, and R. H. Palmer: Selected aspects of steroid pharmacology. Pharmacol. Rev. 15, 123 (1963).Google Scholar
  899. L. Hellman, and R. H. Palmer, and P. B. Glickman: Steroid fever. Amer. J. Med. 31, 167 (1961).CrossRefGoogle Scholar
  900. L. Hellman, and B. Ratkovits: Species specificity of steroid induced fever. J. clin. Endocr. 20, 898 (1960).CrossRefGoogle Scholar
  901. L. Hellman, W. Sovbel, D. K. Fukusiiima and T. F. Gallagher: Studies on pyrogenic steroids in man. Trans Ass. Amer. Phycns 72, 54 (1959).Google Scholar
  902. L. Hellman, W. Sovbel, P. Glickman and D. K. Fukushima: Fever-producing steroids of endogenous origin in man. Arch. intern. Med. 105, 701 (1960).Google Scholar
  903. Kaufmann, M. M.: Influence exercée par la fièvre sur les actions chimiques intra-organiques et la thermogénèse. C. R. Soc. Biol. (Paris) 10, 773 (1896).Google Scholar
  904. Keene, W. R.: The pathogenesis of fever. Fevers produced by intrathecal injection of endotoxin. Bull. Johns Hopk. Hosp. 99, 103 (1956).Google Scholar
  905. Keene, W. R., M. Landy, M. J. Shear and K. A. Strelecky: Inactivation of endotoxin by a humoral component. VII. Enzymatic degradation of endotoxin by human plasma. J. clin. Invest. 40, 302 (1961).PubMedCrossRefGoogle Scholar
  906. Keene, W. R., H. R. Silberman, M. Landy and K. A. Strelecky: Observation on the pyrogenic response and its application to the bioassay of endotoxin. J. clin. Invest. 40, 295 (1961).PubMedCrossRefGoogle Scholar
  907. Keeton, R. W.: Vaccine fever in rabbits rendered poikilothermous by cervical cord transsection. Amer. J. Physiol. 71, 120 (1924/25).Google Scholar
  908. Keller, A. D., and W. K. Hare: Heat regulation in medullary and in midbrain preparations. Proc. Soc. exp. Biol. (N.Y.) 29, 1067 (1932).Google Scholar
  909. Keller, A. D., and W. K. Hare: The hypothalamus and heat regulation. Proc. Soc. exp. Biol. (N.Y.) 29, 1069 (1932).Google Scholar
  910. Ken, K., E. Araki and T. Maeda: Die autonome Innervation des willkürlichen Muskels und ihre Beziehung zur chemischen Wärmeregulation. Pflügers Arch. ges. Physiol. 225, 372 (1930).Google Scholar
  911. Kerby, G. P.: Release of enzyme from human leucocytes on damage by bacterial derivatives. Proc. Soc. exp. Biol. (N.Y.) 81, 381 (1952).Google Scholar
  912. Kiessig, H.-J.: Untersuchungen über die Wirkungsweise der Sympathicomimetica. VII. liber die temperatursteigernde Wirkung einiger Sympathicomimetica. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 197, 384 (1940).CrossRefGoogle Scholar
  913. Kiliani, M.: Pharmakologische Wertbestimmung der technischen Fiebermittel. Arch. int. Pharmacodyn. 21, 333 (1911).Google Scholar
  914. Killian, H.: Fieber. Munch. med. Wschr. 95, 262 (1953).Google Scholar
  915. Krrm, M. K.: The effects of various endogenous pyrogens on circulating granulocytes. J. Lab. clin. Med. 54, 833 (1959).Google Scholar
  916. Krrm, M. K.: Pathogenesis of fever : effects of various endogenous pyrogens upon the level of circulating granulocytes in normal rabbits. J. exp. Med. 112, 809 (1960).CrossRefGoogle Scholar
  917. Krrm, M. K., and W. B. Woon: Studies on the pathogenesis of fever. III. The leucocytic origin of endogenous pyrogen in acute inflammatory exudates. J. exp. Med. 107, 279 (1958a).CrossRefGoogle Scholar
  918. Krrm, M. K., Production of fever in rabbits with extracts of tissue culture cells infected with Coxsackie virus. J. Lab. clin. Med. 59, 986 (1962).Google Scholar
  919. Krrm, M. K., Pathogenesis of fever in rabbits following intravenous injection of Coxsackie virus. J. Lab. clin. Med. 63, 23 (1964).Google Scholar
  920. Krrm, M. K., IV. The site of action of leucocytic and circulating endogenous pyrogen. J. exp. Med. 107, 291 (1958b).CrossRefGoogle Scholar
  921. Krrm, M. K., V. The relation of circulating endogenous pyrogen to the fever in acute bacterial infections. J. exp. Med. 107, 305 (1958c).CrossRefGoogle Scholar
  922. Krrcaanrmer, W F, A R Hess and R. G. Spears: Attempts of passive transfer of tuberculin type of sensitivity with living granulocytes. Amer. Rev. Tubero. 64, 516 (1951).Google Scholar
  923. Krrcaanrmer, W F, and R. S. Weiser: Tuberculin reaction. I. Passive transfer of tuberculin sensitivity with cells of tuberculous guinea pigs. Proc. Soc. exp. Biol. (N.Y.) 66, 166 (1947).Google Scholar
  924. Krrcaanrmer, W F, and R. S. Weiser, and R. VAN Liew: III. Transfer of systemic tuberculin sensitivity with cells of tuberculous guinea pigs. Proc. Soc. exp. Biol. (N.Y.) 70, 99 (1949).Google Scholar
  925. Kisskalt, K.: Über das Gießfieber und verwandte gewerbiiche Metalldampfinhalationskrankheiten. Z. Hyg. Infekt.-Kr. 71, 472 (1912).CrossRefGoogle Scholar
  926. Klemperer, G.: Die Beziehungen verschiedener Bakteriengifte zur Immunisierung und Heilung. Z. klin Med. 20, 165 (1892).Google Scholar
  927. Klemperer, G. H. : The uncoupling of oxydative phosphorylation in rat liver mitochondria by thyroxine, trijodothyronine and related substances. Biochem. J. 60, 122 (1955).PubMedGoogle Scholar
  928. Klzssruxrs, N., and I. Dosi: Untersuchungen über die Wirkung des Megaphens und des Reserpins auf das Phenylisopropylaminfieber des Kaninchens. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 236, 113 (1959).Google Scholar
  929. Knoll, K. H.: Vergleichende Pyrogenwirksamkeit von Bakterienpolysacchariden pathogener und apathogener Klebsiellastämme. Z. Immun -Forsch. 11.6, 2 (1958).Google Scholar
  930. Knoppers, A. T., and J. TEN Cate: La glande thyroide, est-elle importante pour Faction hyperthermisante de la tetra-hydro-ß-naplthylamine ? Arch. néerl. Physiol. 27, 133 (1943a).Google Scholar
  931. Knoppers, A. T., and J. TEN Cate: Tetrahydro-ß-naphthylamine et les glandes endocrines. II. l’Hypophyse. Arch. néerl. Physiol. 27, 224 (1943b).Google Scholar
  932. Knoppers, A. T., and J. TEN Cate: Tetrahydro-ß-naphthylamine et les glandes endocrines. III. Les glandes surrénales. Arch. néerl. Physiol. 27, 235 (1943c).Google Scholar
  933. Kobayashi, G. S.. and L. Friedman: False positive pyrogenic responses induced in rabbits by latex particles. Proc. Soc. exp. Biol. (N.Y.) 116, 716 (1964).Google Scholar
  934. Kobayashi, M., N. Fujitake and H. Yamada: A note on the double-peak curve of body temperature induced by pyrogens. Jap. J. Pharmacol. 1, 44 (1951).Google Scholar
  935. Körner, H.: Beiträge zur Temperaturtopographie des Säugetierkörpers. Diss. Breslau 1871.Google Scholar
  936. Kondo, S.: Acta Sch. med. Univ. imp. Kioto 3, 169 (1919).Google Scholar
  937. Kopp, I.: Metabolic rates in therapeutic fever. Amer. J. med. Sci. 190, 491 (1935).CrossRefGoogle Scholar
  938. Kosara, T.: The heat production in the liver. J. orient. Med. 12, 19 (1930).Google Scholar
  939. Kraus, F.: Vasomotoren und Fieber. Wien. klin. Wschr. 11, 229 (1894).Google Scholar
  940. Kreiil, L.: Versuche über die Erzeugung von Fieber bei Tieren. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 35, 22 (1895).Google Scholar
  941. Kreiil, L.: Wesen und Behandlung des Fiebers. Verh. dtseh. Kongr. inn. Med. 30, 26 (1913).Google Scholar
  942. Kreiil, L., and Kratzsch: Untersuchungen über die Orte der erhöhten Wärmeproduktion im Fieber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 41, 184 (1898).Google Scholar
  943. Kreiil, L., and M. Mattes: Wie entsteht die Temperatursteigerung des fiebernden Organismus ? Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 38, 284 (1897).CrossRefGoogle Scholar
  944. Krön, R.: Die intravenöse Schwefeltherapie. Schweiz. med. Wschr. 81, 963 (1951).Google Scholar
  945. Kroneberg, G., and G. H. Kuebjuweit: Die Beeinflussung von experimentellem Fieber durch Reserpin und Sympathicolytica am Kaninchen. Arzneimittel-Forsch. 9, 556 (1959).Google Scholar
  946. Kuv, E.: Effect of bacterial endotoxin on glycogen synthesis. Proc. Soc. exp. Biol. (N.Y.) 68, 496 (1948).Google Scholar
  947. Kuv, E., and L. G. Abood: Mechanism of inhibition of glycogen synthesis by endotoxins of Salmonella aertrycke and type I Meningococcus. Proc. Soc. exp. Biol. (N.Y.) 71, 362 (1949).Google Scholar
  948. Kuv, E., and C. P. Miller: Effect of bacterial endotoxins on carbohydrate metabolism of rabbits. Proc. Soc. exp. Biol. (N.Y.) 67, 221 (1948).Google Scholar
  949. Kung, S., A. O. Edison and Cand BUTZ : A method for large scale testing of pyrogens. J. Amer. pharm. Ass., sci. Ed., 35, 59 (1946).Google Scholar
  950. Kuuisut, M.: Pyrogens. Fol. pharmacol. jap. 49, 69 (1953). Ref. Chem. Abstr. 48, 6554 (1954).Google Scholar
  951. Kym, O.: Die Beeinflussung des durch verschiedene fiebererzeugende Stoffe erregten Temperaturzentrums durch lokale Applikation von Ca, K und Na. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak 176, 408 (1934).CrossRefGoogle Scholar
  952. Lambert, G. F., J. P. Miller and D. V. Frost: Febrile response following intravenous administration of fat. Amer. J. Physiol. 164, 490 (1951).Google Scholar
  953. Landy, M.: Increase in resistence following administration of bacterial lipopolysaccharides. Ann. N.Y. Acad. Sci. 66, 292 (1956).CrossRefGoogle Scholar
  954. Landy, M., and A. G. Jouuson: Studies on the 0 antigen of salmonella typhosa. IV. Endotoxic properties of the purified antigen. Proc. Soc. exp. Biol. (N.Y.) 90, 57 (1955).Google Scholar
  955. Landy, M., and L. Plllemer: Increased resistance to infection and accompanying alteration in properdin levels following administration of bacterial lipopolysaccharides. J. exp. Med. 104, 383 (1956a).CrossRefGoogle Scholar
  956. Landy, M., and M. J. Sh ear: Host responses elicited by polysaccharides of bacterial and mammalian derivation. Fed. Proc. 16, 857 (1957a).Google Scholar
  957. Landy, M., and M. J. Shear: Similarity of host responses elicited by polysaccharides of animal and plant origin and by bacterial endotoxins. J. exp. Med. 106, 77 (1957b).CrossRefGoogle Scholar
  958. Landy, M., and M. J. Shear: Polysaccharides of mammalian derivation. Their biological activities, including interaction with properdin. Tran. 6th Congr. European Soc. Haematology, Copenhagen, 1957c.Google Scholar
  959. Landy, M., R. C. Siarnes, F. S. Rosen, R. J. Trapani and J. Shear: Inactivation of biologically active (“endotoxic”) polysaccharides by fresh human serum. Proc. Soc. exp. Biol. (N.Y.) 96, 744 (1957).Google Scholar
  960. Landy, M., R. J. Trapani and M. J. Shear: Inactivation of endotoxin by a humoral component. IV. Alteration in the immunological properties of typhoid endotoxin. Fed. Proc. 18, 579 (1959).Google Scholar
  961. Langlois, J. P.: Fièvre. Richet’s Diet. Physiol. 6, 423 (1904).Google Scholar
  962. Laszlo, D., and M. Waghsteln: Beitrag zur Wärmeregulation im Fieber. Klin. Wschr. 13, 1568 (1934).CrossRefGoogle Scholar
  963. Laurexz1, A. F.: Apparecchio a registrazione automatica per il controllo dei pirogeni. Boll. chim -farm. 95, 540 (1956).Google Scholar
  964. Leblond, E. : Étude physiologique et thérapeutique de la caféine. Thèse de Paris 1883.Google Scholar
  965. Lechat, P., and D. Deleau: Corticosurrénales et fièvre provoquée par les pyrogènes bactériens. C. R. Soc. Biot (Paris) 155, 2276 (1962).Google Scholar
  966. LEE, R. C.: The rectal temperature of the normal rabbit. Amer. J. Physiol. 125, 521 (1939).Google Scholar
  967. Lefèvre, J.: Chaleur animale et bioénergétique. Paris : Masson & Cie. 1911.Google Scholar
  968. Lehmann, K. B.: Studien über technisch und hygienisch wichtige Gase und Dämpfe. XIV. Das Gieß-oder Zinkfieber. Arch. Hyg. (Berl.) 72, 358 (1921).Google Scholar
  969. Lxminger, A. L.: The action of thyroxine on mitochondria and oxydative phosphorylation. Proc. Internat. Sympos. Enzyme Chem. Tokyo and Kyoto 1957, p. 297Google Scholar
  970. Lxminger, A. L.: Thyroxine and the swelling and contraction cycle in mitochondira. Ann. N.Y. Acad. Sci. 86, 484 (1960).Google Scholar
  971. Lxminger, A. L., and B. L. Ray: Oxydation-reduction state of rat liver mitochondria and the action of thyroxine. Biochim. biophys. Acta 26, 643 (1957).Google Scholar
  972. Leonard, S. L.: Effect of hormones on muscle glycogenolysis in hypophysectomized animals. Amer. J. phys. Med. 34, 297 (1955).PubMedGoogle Scholar
  973. Leonard, S. L., and I. Ringler: Glycogenolytic effects of epinephrine in skeletal muscles of hypophysectomized rats treated with glycopexic hormones. Endocrinology 55, 212 (1954).CrossRefGoogle Scholar
  974. Lequire, V. S.: Augmentation of the thermogenic effects of pyrogens by homologous plasma in rabbits. Naval Med. Res. Inst. Proj. NM 007047 Rep. No 6 (1949).Google Scholar
  975. Lequire, V. S.: The augmentation of the thermogenic effects of pyrogens by homologous plasma in rabbits (including the effect of heparin). J. infect. Dis. 88, 194 (1951).PubMedCrossRefGoogle Scholar
  976. Lesciiiie, E.: Untersuchungen über anaphylaktisches Fieber. Verh. dtsch. Kongr. inn. Med. 30, 80 (1913).Google Scholar
  977. Leuthardt, F., and B. Exer: JYber den Einfluß des Methylenblaus auf die Atmung der Leber-mitochondrion. Rely. chim. Acta 36, 519 (1953).Google Scholar
  978. Levassort, CH.: Action de quelques agents pharmacodynamiques hyperthermisants et hypothermisants sur le métabolisme de base du lapin. J. Physiol. (Paris) 56, 693 (1964).Google Scholar
  979. Leyden, E., and A. Fräikel: Über den respiratorischen Gasaustausch im Fieber. Virchows Arch. path. Anat. 76, 136 (1879).Google Scholar
  980. Liebermeister, C.: Handbuch der Pathologie und Therapie des Fiebers. Leipzig 1875.Google Scholar
  981. Ling, C. Y.: The mechanism of reaction of nonspecific protein agents in the treatment of disease. I. The influence of various agents on temperature and leukocyte counts in normal persons and in rabbits. II. The influence of various agents on the mobilization of blood antibodies. III. The influence of various agents on the mobilization of blood enzymes in normal persons and in rabbits. Arch. intern. Med. 35, 598, 790 (1925).Google Scholar
  982. Löffler, W.: TJber Fieber. Schweiz. med. Wschr. 6, 1181 (1925).Google Scholar
  983. Loewi, O.: Pharmakologie des Wärmehaushaltes. Ergebn. Physiol. 3, 332 (1904).Google Scholar
  984. Loewi, O., and O. Weselko: Über den Einfluß der Thyreoidektomie auf die Wärmestichreaktion bei Kaninchen. Zbl. Physiol. 28, 197 (1914).Google Scholar
  985. Logan, R. E., and A. Lein: Time required for metabolic response to single injection of thyroxin. Fed. Proc. 10, 85 (1951).Google Scholar
  986. Lotti, V. J., P. Lomax and R. George: Temperature responses in the rat following intracerebral microinjection of morphine. J. Pharmacol. exp. Ther. 150, 135 (1965).PubMedGoogle Scholar
  987. Lüderitz, O.: Fiebererzeugende Substanzen mit besonderer Berücksichtigung bakterieller Pyrogene. Schriftenreihe WANDER, Reizbeantwortung des Körpers. Bern: Wander 1959.Google Scholar
  988. Lüderitz, O., D. Hammer, F Goebel, K. Sievers AND O. Westphal: Die Inaktivierung der endotoxischen Wirksamkeit bakterieller Lipopolysaccharide im Serum, Plasma und Vollblut vom Pferd. Z. Naturforsch. 13 b, 565 (1958).Google Scholar
  989. Lüderitz, O., and O. Westphal: Die Bedeutung von Mutanten bei Enterobacteriaceen für die chemische Erforschung ihrer Zellwand-Polysaccharide. Angew. Chemie (1966) (im Druck).Google Scholar
  990. Lüdre, H.: Über Ursachen und Wirkungen der Fiebertemperatur. Ergebn. inn. Med. Kinderheilk. 4, 493 (1909).Google Scholar
  991. Maass, TH. A.: Stoffwechsel bei Hyperthermien, Fieber. In: Handbuch der Biochemie des Menschen und der Tiere, Erg.-Bd. 3, S. 248. Jena: G. Fischer 1936.Google Scholar
  992. MACLENNAN, A. P.: Specific lipopolysaccharides of Bordetella. Biochem. J. 74, 398 (1960).Google Scholar
  993. Mager, J., and E. Theodor: Inhibition of mitochondrial respiration and uncoupling of oxydative phosphorylation by fraction of shigella paradysenteriae type III somatic antigen. Arch. Biochem. 67, 169 (1957).Google Scholar
  994. Magne, H., A. Mayer and L. Plantefol: Action pharmacodynamique des phénols nitrés. Un agent augmentant les oxydations cellulaires. Le dinitrophénol 1–2–4 (Thermol). Ann. Physiol. Physicochim. biol. 7, 269 (1931).Google Scholar
  995. Magne, H., A. Mayer and L. Plantefol: Action pharmacodynamique des phénols nitrés. Un agent augmentant les oxydations cellulaires. Le dinitrophénol 1–2–4 (Thermol). Ann. Physiol. Physicochim. biol. 8, 1 (1932a).Google Scholar
  996. Magne, H., A. Mayer and L. Plantefol: Ètudes sur l’action du dinitrophénol 1–2–4 (Thermol). II. Quelques retentissements de l’intoxication mortale par le dinitrophénol 1–2–4 sur les phénomènes généraux de la nutrition. Action sur les reserves de glucides. Ann Physiol. Physicochim. biol. 8, 51 (1932b).Google Scholar
  997. Magne, H., A. Mayer and L. Plantefol: III. L’intoxication non mortelle et l’intoxication chronique par le dinitrophénol 1–2–4. Accoutumance au dinitrophénol. Ann Physiol. Physicochim. biol. 8, 70 (1932c).Google Scholar
  998. Magne, H., A. Mayer and L. Plantefol: VIII. Action pharmacologique des differents phénols nitrés. Comparison de l’intoxication par le dinitrophénol 1–2–4 avec celles que provoquent les autres phénols nitrés. Ann. Physiol. Physicochim. biol. 8, 157 (1932d).Google Scholar
  999. Magnus, R.: Allgemeines über Abführmittel. Anthrachinonderivate, Chrysarobin, Phenolphthalein. In: Handbuch der experimentellen Pharmakologie, Bd. II/2, S. 1592. Berlin: Springer 1924.Google Scholar
  1000. Magoun, H. W., F. Harrison, J. R. Brodbeck and S. W. Ranson: Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1, 101 (1938).Google Scholar
  1001. Magyary-Kossa, J. v.: Über den Einfluß der Aloe und der Antrachinonderivate auf die Körpertemperatur. Arch. hit. Pharmacodyn. 20, 157 (1910)Google Scholar
  1002. Maley, G. F., and H. A. Lardy: Metabolic effects of thyroid hormones in vitro. II. Influence of thyroxine and triiodothyronine on oxydative phosphorylation. J. biol. Chem. 204, 435 (1953).PubMedGoogle Scholar
  1003. Mameli, E. and E. Filippi: Azione biotermica delle sostanze organiche. Ann. clin. appl. 16, 556 (1926).Google Scholar
  1004. Mann, G. V., R. P. Geyer, D. M. Watrin and F. J. Stare: Parenteral nutrition. IX. Fat emulsions for intravenous nutrition in man. J. Lab. clin. Med. 34, 699 (1949).PubMedGoogle Scholar
  1005. Mansfeld, G.: Über das Wesen der chemischen Wärmeregulation. Pflügers Arch. ges. Physiol. 171, 430 (1915).Google Scholar
  1006. Mansfeld, G.: Die Wanderung des Thyroxins durch Nerven und ihre Bedeutung für die Katalyse der Zellatmung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 193, 241 (1939).CrossRefGoogle Scholar
  1007. Mansfeld, G.: Die Hormone der Schilddrüse und ihre Wirkungen. Basel: Benno Schwabe & Co. 1943.Google Scholar
  1008. Mansfeld, G., and E. Meszaros: Weitere Untersuchungen über humorale Übertragbarkeit der chemischen Wärmeregulation. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 196, 590 (1940a).CrossRefGoogle Scholar
  1009. Mansfeld, G., and E. Meszaros: Tuber das Nichtvorhandensein einer zentrenlosen Wärmeregulation. Naunyn-Schmicdeberg’s Arch. exp. Path. Pharmak. 196, 609 (1940b).CrossRefGoogle Scholar
  1010. Mansfeld, G., F. v. Tyukody and I. Scheff-Pfeifer: Über den Angriffspunkt des Thyroxins. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 181, 376 (1936).CrossRefGoogle Scholar
  1011. Mantegazza, P., and M. Riva: Anorexigenic activity of L (-) Dopa in animals pretreated with monoaminoxidase inhibitors. Med. exp. 4, 367–373 (1961).PubMedGoogle Scholar
  1012. Maragliano, ED.: Das Verhalten der Blutgefäße im Fieber und bei Antipyrese. Z. klin. Med. 14, 309 (1888); 17, 291 (1890).Google Scholar
  1013. Marcus, S., C. Anselmo and J. J. Perkins: Studies on bacterial pyrogenicity. I. Quantitative basis. Proc. Soc. exp. Biol. (N.Y.) 99, 359 (1958).Google Scholar
  1014. Marine, D., M. Deutch and A. Cira: Effect of ergotamine tartrate on the heat production of normal and thyroidectomized rabbits. Proc. Soc. exp. Biol. (N.Y.) 24, 662 (1927).Google Scholar
  1015. Martin, H., and W. Spielmann: Pyrogenes Material aus normalen Erythrocyten. Klin Wschr. 36, 491 (1958).PubMedCrossRefGoogle Scholar
  1016. Martini, E.: Increase of the cathepsin activity of the liver and of the skeletal muscle of rats treated either with 2,4-Dinitrophenol or with bacterial lipopolysaccharide. Experientia (Basel) 15, 182 (1959).CrossRefGoogle Scholar
  1017. Martini, P., and FR. Grosse - Brockhoff: Strophanthinwirkung im Fieber. Naunyn- Schmiede-berg’s Arch. exp. Path. Pharmak. 180, 597 (1956).CrossRefGoogle Scholar
  1018. Martini, V.: Azione della contenzione e della narcosi sulla ipertermia sperimentale da vaccino e da sostanze chimiche. Arch. int. Pharmacodyn. 48, 366 (1934).Google Scholar
  1019. Martini, V., and M. Orunesu: Azione della tetraidronaftilamina (T.I.N.A.) sul contenuto di glicogeno epatico e muscolare e sulla glicemia del ratto. Boll. Soc. ital. Biol. sper. 33, 1682 (1957).PubMedGoogle Scholar
  1020. Martini, V., and M. Orunesu: Hepatic cyclophorase activity in rats treated with 1,2,3,4-tetrahydro-ß-naphtylamine (THNA). Experientia (Basel) 15, 331 (1959a).CrossRefGoogle Scholar
  1021. Martini, V., and M. Orunesu: In vitro effects of 1,2,3,4-tetrahydro-ß-naphthylamine (THNA) on succinate oxidation by rat liver homogenates. Experientia (Basel) 15, 332 (1959b).CrossRefGoogle Scholar
  1022. Martius, C.: Die Stellung des Phyllochinons (Vitamin K1) in der Atmungskette. Biochem. Z. 326, 26 (1954).PubMedGoogle Scholar
  1023. Martius, C.: Thyroxin und oxydative Phosphorylierung. 3 e Congr. int. Biochimie, Bruxelles 1955.Google Scholar
  1024. Martius, C., and B. Huss: The mode of action of thyroxine. Arch. Biochem. 33, 486 (1951).Google Scholar
  1025. Martius, C., and B. Huss: 1 ber den Wirkungsmechanismus des Schilddriisenhormons. Biochem. Z. 326, 191 (1955).PubMedGoogle Scholar
  1026. Matakas, F.: Besteht ein Parallelismus zwischen Funktion und Stoffwechsel vegetativer Organe ? Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 162, 395 (1931).CrossRefGoogle Scholar
  1027. Matsueda, A.: Experimentelle Untersuchungen über die biologischen Wirkungen des Histamins. VII. Mitt. Tuber die Vergleichungen der Histamin-und der Adrenalinwirkungen auf den Blutzucker und die Körpertemperatur. Okayama Igakkai Zasshi 44, 1016 (1932). Ref. Ber. ges. Physiol. 68, 790 (1932).Google Scholar
  1028. May, R.: Der Stoffwechsel im Fieber. Biochem. Z. 30, 1 (1893).Google Scholar
  1029. Mccabe, W. R.: Tolerance to bacterial endotoxin produced by proliferation of gram negative bacteria in the kidney. Proc. Soc. exp. Biol. (N.Y.) 107, 402 (1961).Google Scholar
  1030. Mccabe, W. R.: Endotoxin tolerance. II. Its occurence in patients with pyelonephritis. J. clin. Invest. 42. 618 (1963).PubMedCrossRefGoogle Scholar
  1031. Mccabe, W. R., and L. V. Anderson: Endotoxin tolerance. I. Its induction by experimental pyelonephritis. J. clin. Invest. 42, 610 (1963).PubMedCrossRefGoogle Scholar
  1032. Mcclosky, W. T., C. W. Price, W. V. Winkle Jr., H. Welch and H. O. Calvery: Results of first ANDS.P. collaborative study of pyrogens. J. Amer. pharm. Ass., sci. Ed. 32, 69 (1943).CrossRefGoogle Scholar
  1033. I vicdonald, R. K., V. K.