Advertisement

Choline Acetylase

  • David Nachmansohn
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 15)

Abstract

The discovery of choline acetylase (ChAc) was the outcome of the theory that acetylcholine (ACh) is the specific operative substance in nerve activity. When the energy released by the breakdown of phosphocreatine during electrical activity of the electric organ of Electrophorus was found to be more than adequate to account for the electrical energy released, it was assumed that this energy was used as in muscle for the resynthesis of adenosine triphosphate (ATP) and that in the sequence of energy transformations the breakdown of ATP preceded that of phosphocreatine. Several characteristics of ATP breakdown make it unlikely that ATP is directly associated with the elementary process of bioelectrogenesis. In particular, the requirement of the high turnover time is not satisfied. If the theory that ACh was the trigger required in the elementary process was correct, then it appeared likely that the energy released by ATP breakdown should be used, at least partly, for the resynthesis of ACh. This assumption proved to be correct: on addition of ATP to cell-free extracts prepared from brain and electric organs, the first enzymatic acetylation of choline in a soluble system was achieved (Nachmansohn and Machado 1943). The evidence that the energy of the breakdown of ATP may be used for a biosynthetic reaction outside the glycolytic cycle was rather unexpected. It opened the way for a detailed analysis of the mechanism of acetylation in general which at the time, in the early 1940’s, began to attract increasingly the interest of many biochemists.

Keywords

Electric Organ Pigeon Liver Sciatic Nerve Fiber Thenic Acid Choline Acetylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Baddiley, J., and E. M. Thain: Coenzyme A. Part II. Evidence for its formulation as a derivative of pantothenic acid-4’ phosphate. J. them. Soc. 1951, 2253–2258.Google Scholar
  2. Banister, J., and M. Scrase: Acetylcholine synthesis in normal and denervated sympathetic ganglia of the cat. J. Physiol (Lond.) 3, 437–444, (1950).Google Scholar
  3. Berg, P.: Acyl adenylates An enzymatic mechanism of acetate activation. J. biol. Chem. 222, 991–1013 (1956a).PubMedGoogle Scholar
  4. Berg, P. Acyladenylates: The synthesis and properties of adenyl acetate. J. biol. Chem. 222, 1015–1023 (1956b).PubMedGoogle Scholar
  5. Berman, R., I. B. Wu,Son and D. Nachmansohn: Choline acetylase specificity in relation to biological function. Biochim. biophys. Acta 12, 315–324 (1953).Google Scholar
  6. Berman-Reisberg, R.: Sulfhydryl groups of choline acetylase. Biochim. biophys. Acta 14, 442–443 (1954).Google Scholar
  7. Berman-Reisberg, R.: Properties and biological significance of choline acetylase. Yale J. Biol. Med. 29, 403–435 (1957).Google Scholar
  8. Bernhard, K.: Über die Herkunft der Essigsäure bei den Acetylierungen in vivo. I. Die Acetylierung von Sulfanilamid and p-Aminobenzoesäure bei gleichzeitigen Gaben von Deutero-Essigsäure. Hoppe-Seylers Z. physiol. Chem. 267, 91–102 (1940).CrossRefGoogle Scholar
  9. Berry, J. F., and V. P. Whittaker: The acyl-group specificity of choline acetylase. Biochem. J. 73, 447 458 (1959).Google Scholar
  10. Brown, G. M., J. A. Craig and E. E. Snell: Relation of the Lactobacillus bulgaricus factor to pantothenic acid and coenzyme A. Arch. Biochem. 27, 473–475 (1950).Google Scholar
  11. Burgen, A. S. V., G. Burke and Marie-Louise Desbarats-Schonbaum: The specificity of brain choline acetylase. Brit. J. Pharmacol. Chemother. 11, 308–312 (1956).CrossRefGoogle Scholar
  12. Chang, H. C., W. M. Hsieh, L. Y. Lee, T. H. Li and R. K. S. Lim: Studies on tissue acetylcholine. VII. Acetylcholine content of various nerve trunks and its synthesis in vitro. Chin. J. Physiol. 14, 27–38 (1939).Google Scholar
  13. Cohen, M.: Concentration of choline acetylase in conducting tissue. Arch. Biochem. 60, 284–296 (1956).PubMedCrossRefGoogle Scholar
  14. Darin, H. D.: The mode of oxidation in the animal organism of phenyl derivatives of fatty acids. Part V. Studies on the fate of phenylvaleric acid and its derivatives. J. biol. Chem. 6, 221–243 (1909).Google Scholar
  15. Eisenberg, M. A.: The tricarboxylic acid cycle in Rhodospirillum Rubrum. J. biol. Chem. 203, 815–836 (1953).PubMedGoogle Scholar
  16. Eisenberg, M. A.: The acetate-activating enzyme of Rhodospirillu.m Rubrum. Biochim. biophys. Acta 16, 58–65 (1955).Google Scholar
  17. Fahmy, A. R., B. E. Ryman and E. O’F. Walsh: The inhibition of choline acetylase by nicotine. J. Pharm. (Lond.) 6, 607–609 (1954).CrossRefGoogle Scholar
  18. Feigl, F.: Qualitative analysis by spot tests. Amsterdam Elsevier 1946.Google Scholar
  19. Feldberg, W.: Synthesis of acetylcholine in sympathetic ganglia and cholinergic nerves. J. Physiol. (Lond.) 101, 432–445 (1943).Google Scholar
  20. Feldberg, W.: Present views on the mode of action of acetylcholine in the central nervous system. Physiol. Rev. 25, 596–642 (1945).PubMedGoogle Scholar
  21. Feng, T. P.: The heat production of nerve. Erg. Physiol., Biol. Chemie und Exp. Pharm. 38, 73–132 (1936).CrossRefGoogle Scholar
  22. Hebb, C. O.: Biochemical evidence for the neural function of acetylcholine. Physiol. Rev. 37, 196–220 (1957).PubMedGoogle Scholar
  23. Hebb, C. O. and G. M. H. Waites: Choline acetylase in antero-and retro-grade degeneration of a cholinergic nerve. J. Physiol. (Loud.) 132, 667–671 (1956).Google Scholar
  24. Henschler, D.: Zur Frage des Vorkommens von Butyrylcholin im Rindergehirn. HoppeSeylers Z. physiol. Chem. 305, 97–104 (1956).Google Scholar
  25. Hestrtn, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxyl-amine and its analytical application. J. biol. Chem. 180, 249–261 (1949).Google Scholar
  26. Holtz, P., u. H. J. Schueman: Butyrylcholine in Gehirnextrakten. Naturwissenschaften 41, 306 (1954).CrossRefGoogle Scholar
  27. Klein, J. R., and J. S. Harris: The acetylation of sulfanilamide in vitro. J. biol. Chem. 124, 613–626 (1938).Google Scholar
  28. Knoop, F.: Der Abbau aromatischer Fettsäuren im Tierkörper. Beitr. Chem. Physiol. Path. 6, 150–162 (1905).Google Scholar
  29. Koenig, E., and G. B. Koelle: Acetylcholinesterase regeneration in peripheral nerve after irreversible inactivation. Science 132, 1249–1250 (1960).PubMedCrossRefGoogle Scholar
  30. Korey, S. R., B. De Braganza and D. Nacansohn: Choline acetylase V. Esterifications and transacetylations. J. biol. Chem. 189, 705–715 (1951).PubMedGoogle Scholar
  31. Korkes, S., A. DEL Campillo, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citric acid IV. Pyruvate as acetyl donor. J. biol. Chem. 193, 721–735 (1951).PubMedGoogle Scholar
  32. Korkes, S. A. Del Campillo, S. R. Korey, J. R. Stern, D. Nachmansohn and S. Ochoa: Coupling of acetyl donor systems with choline acetylase. J. biol. Chem. 198, 215–220 (1952a).PubMedGoogle Scholar
  33. Korkes, S. and S. Ochoa: Pyruvate oxidation system of heart muscle. J. biol. Chem. 195, 541–547 (1952 b).Google Scholar
  34. Koshland, D. E.: Group transfer as an enzymatic substitution mechanism. In The Mechanism of Enzyme Action, W. D. Mcelroy and B. Glass, eds. p. 608. Baltimore Johns Hopkins Press 1954.Google Scholar
  35. Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. biol. Chem. 160, 173–190 (1945).Google Scholar
  36. Lipmann, F.: Biosynthetic mechanisms. Harvey Lect. 1948/1949, 99–123 (1950).Google Scholar
  37. Lipmann, F.: Enzymatic group activation and transfer. In. Metabolism of the Nervous System, D. RICHTER, ed. pp. 329–340. Pergamon Press 1957.Google Scholar
  38. Lipmann, F. and N. O. Kaplan: A common factor in the enzymatic acetylation of sulfanilamide and of choline. J. biol. Chem. 162, 743–744 (1946).Google Scholar
  39. Lipmann, F. G. D. Novelli, L. C. Tuttle and B. M. Guirard: Coenzyme for acetylation, a pantothenic acid derivative. J. biol. Chem. 167, 869–870 (1947).PubMedGoogle Scholar
  40. Lissak, K., and J. Pasztor: Azetylcholingehalt sensibler Nerven. Pflügers Arch. ges. Physiol. 244, 120–124 (1941).Google Scholar
  41. Lynen, F., E. Reichert and L. Rueff: Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann 574, 1–32 (1951).CrossRefGoogle Scholar
  42. Mann, P. J. F., M. Tennebaum and J. H. Quastel: Acetylcholine metabolism in the central nervous system. The effects of potassium and other cations on acetylcholine liberation. Biochem. J. 33, 823–835 (1939).Google Scholar
  43. Marks, B. H.: Effect of barbiturates on acetylation. Science 123, 332–333 (1956).PubMedCrossRefGoogle Scholar
  44. Nachmansohn, D.: Chemical mechanism of nerve activity. Ann N Y Acad. Sci. 47, 395–428 (1946).CrossRefGoogle Scholar
  45. Nachmansohn, D.: Chemical and Molecular Basis of Nerve Activity. New York Academic Press 1959.Google Scholar
  46. Nachmansohn, D. and M. BERMAN: Studies on choline acetylase. III. On the preparation of the coenzyme and its effect on the enzyme. J. biol. Chem. 165, 551–563 (1946).PubMedGoogle Scholar
  47. Nachmansohn, D. and H. M. John: Inhibition of choline acetylase by a-keto acids. Proc. Soc. exp. Biol. (N. Y.) 57, 361–362 (1944).CrossRefGoogle Scholar
  48. Nachmansohn, D.: Studies on choline acetylase. I. Effect of amino acids on the dialyzed enzyme. Inhibition by a-keto acids. J. biol. Chem. 158, 157–171 (1945).Google Scholar
  49. Nachmansohn, D. and M. Berman: Studies on choline acetylase. II. The formation of acetylcholine in the nerve axon. J. biol. Chem. 163, 475–480 (1946).PubMedGoogle Scholar
  50. Nachmansohn, D. and H. WAELSCH• Effect of glutamic acid on the formation of acetylcholine. J. biol. Chem. 150, 485–486 (1943).Google Scholar
  51. Nachmansohn, D., and A. L. Machado: The formation of acetylcholine. A new enzyme “choline acetylase.” J. Neurophysiol. 6, 397–044 (1943).Google Scholar
  52. Nachmansohn, D., and A. L. Machado and M. S. Weiss: Studies on choline acetylase. IV. Effect of citric acid. J. biol. Chem. 172, 677–697 (1948).PubMedGoogle Scholar
  53. Nachmansohn, D., and A. L. Machado I. B. Wilson, S. R. Korey and R. B.rman: Choline acetylase. VI. Substitution of ATP-acetate by thiolacetate. J. biol. Chem. 195, 25–36 (1952).Google Scholar
  54. Novelli, G. D.: Metabolic functions of pantothenic acid. Physiol. Rev. 33, 525–543 (1953).PubMedGoogle Scholar
  55. Novelli, G. D. and F. Lipmann: The catalytic function of coenzyme A in citric acid synthesis. J. biol. Chem. 182, 213–228 (1950).Google Scholar
  56. Novelli, G. D. F. J. Sctlmetz Jr. and N. O. Kaplan: Enzymatic degradation and resynthesis of coenzyme A. J. biol. Chem. 206, 533–545 (1954).PubMedGoogle Scholar
  57. Rittenberg, D., and K. Bloch: The utilization of acetic acid for the synthesis of fatty acids. J. biol. Chem. 160, 417–424 (1945).PubMedGoogle Scholar
  58. Schoenheimer, R., and D. Rittenberg: Deuterium as an indicator in the study of intermediary metabolism. J. biol. Chem. 114, 381–396 (1936).Google Scholar
  59. Shuster, L., and N. O. Kaplan: A specific b nucleotidase. J. biol. Chem. 201, 535–546 (1953).PubMedGoogle Scholar
  60. Simon, E. J., and D. Shemin: The preparation of S-succinyl-coenzyme A. J. A.er. chem. Soc. 75, 2520 (1953).Google Scholar
  61. Snell, E. E., G. M. Brown, V. J. Peters, J. A. Craig, E. L. Wittle, J. A. Moore, V. M. Mcglohon and O. D. Bird: Chemical nature and synthesis of the Lactobacillus bulgaricus factor. J. Amer. chem. Soc. 72, 5349–5350 (1950).CrossRefGoogle Scholar
  62. Stadtman, E. R.: Coenzyme A-dependent transacetylation and transphosphorylation. Fed. Proc. 9, 233 (1950).Google Scholar
  63. Stadtman, E. R.: The purification and properties of phosphotransacetylase. J. biol. Chem. 196 527–534 (1952 a).Google Scholar
  64. Stadtman, E. R.: The net enzymatic synthesis of acetyl coenzyme A. J. biol. Chem. 196, 535–546 (1952b).PubMedGoogle Scholar
  65. Stadtman, E. R.: G. D. Novelli and F. Lipmann Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. biol. Chem. 191, 365–376 (1951).PubMedGoogle Scholar
  66. Stern, J. R., and S. Ochoa: Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J. biol. Chem. 191, 161–172 (1951).Google Scholar
  67. Stern, J. R., and S. Ochoa and F. Lynen: Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. biol. Chem. 198, 313–321 (1952).Google Scholar
  68. Stern, J. R., and S. Ochoa B. Shapiro, E. R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J. biol. Chem. 193, 703–720 (1951).Google Scholar
  69. Wilson, I. B.: Preparation of acetylcoenzyme. J. Amer. chem. Soc. 74, 3205–3206 (1952).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1963

Authors and Affiliations

  • David Nachmansohn

There are no affiliations available

Personalised recommendations