Skip to main content

Metabolism of Organophosphorus Anticholinesterase Agents

  • Chapter
Cholinesterases and Anticholinesterase Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 15))

Abstract

The growth of the chemical industry has brought a large number of new compounds into common use. Technological developments are sometimes attended by toxicological problems, the study of which in certain cases has led to significant advances in biochemical knowledge. An example of this has been provided by the development of a group of organic derivatives of phosphoric acid, some of which are among the most poisonous substances known. Many of these compounds, originally developed as pesticides, are also useful tools in physiology and biochemistry and may provide new drugs for medicine. A number of organophosphorus compounds have been considered as potential chemical warfare agents, and other related substances are finding new uses in chemical industries Balls and Jansen (1953) have pointed out that any extensively toxic substance is to be suspected a priori of being an inhibitor of some vitally important enzyme system, and the physiological process characteristic of a number of organophosphorus compounds was found to be the inhibition of cholinesterases (ChE’s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Adie, P. A.: The purification of sarinase from bovine plasma. Canad. J. Biochem. 34, 1091–1094 (1956).

    Google Scholar 

  • Adie, P. A.: The intracellular localization of liver and kidney sarinase. Canad. J. Biochem. 36, 21–24 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Aebi, H., and I. Abelin: Die Wirkungsweise verschiedener Effektoren auf die Aktivit-t der alkalischen Nierenphosphatase. Rely. shim. Acta 31, 1943–1958 (1948).

    CAS  Google Scholar 

  • Aldridge, W. N.: Some observations on the characteristics of serum esterases with special

    Google Scholar 

  • Aldridge, W. N.: reference to the hydrolysis of diethyl p-nitrophenyl phosphate (E 600). Ph. D. Thesis,London University (1951).

    Google Scholar 

  • Aldridge, W. N.: Serum esterases. I. Two types of esterase (A and B) hydrolyzing p-nitrophenyl acetate, propionate, butyrate and a method for their determination. Biochem. J. 53, 110–117 (1953a).

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N.: Serum esterases. II. An enzyme hydrolyzing diethyl p-nitrophenyl phosphate (E 600) and its identity with the A-esterase of mammalian sera. Biochem. J. 53, 117–124 (1953b).

    PubMed  CAS  Google Scholar 

  • Arthur, B. W., and J. E. Casida: Metabolism and selectivity of 0,0-dimethyl 2,2,2-trichloro hepteoxethyl phosphonate and its acetyl and vinyl derivatives. J. Agric. Food Chem. 15, 186–191 (1957).

    Article  Google Scholar 

  • Augustinsson, K.-B.: The enzymic hydrolysis of organophosphorus compounds. Biochim. biophys. Acta 13, 303–304 (1954).

    CAS  Google Scholar 

  • Augustinsson, K.-B.: Enzymatic hydrolysis of organophosphorus compounds. I. Occurrence of enzymes hydrolyzing dimethyl-amido-ethoxy-phosphoryl cyanide (Tabun). Acta chem. scand. 8, 753 to 761 (1954 a).

    Google Scholar 

  • Augustinsson, K.-B.: Enzymatic hydrolysis of organophosphorus compounds. II. Analysis of reaction products in experiments with tabun and some properties of blood plasma tabunase. Acta chem. stand 8, 762–767 (1954b).

    Article  CAS  Google Scholar 

  • Augustinsson, K.-B.: Enzymatic hydrolysis or organophosphorus compounds. III. Effect of cholinesterase inhibitors and inhibition of cholinesterase in the presence of tabunase. Acta chem. scand. 8, 915–920 (1954c).

    Article  CAS  Google Scholar 

  • Augustinsson, K.-B.: Enzymatic hydrolysis of organophosphorus compounds. IV. Specificity studies. Acta chem. scand. 8, 1533–1541 (1954d).

    Article  CAS  Google Scholar 

  • Augustinsson, K.-B.: Enzymatic hydrolysis of organophosphorus compounds. VII. The stereospecificity of phosphorylphosphatases. Acta chem. stand. 11, 1371–1377 (1957).

    Article  CAS  Google Scholar 

  • Augustinsson, K.-B. and G. Heed/Burger: Enzymatic hydrolysis of organophosphorus compounds. V. Effect of phosphoryl phosphatase on the inactivation of cholinesterases by organophosphorus compounds in vitro. Acta chem. stand. 9, 310–318 (1955a).

    Article  CAS  Google Scholar 

  • Augustinsson, K.-B.: Enzymatic hydrolysis of organophosphorus compounds. VI. Effect of metallic ions on the phosphorylphosphatases of human serum and swine kidney. Acta chem. stand. 9, 383–392 (1955b).

    Article  CAS  Google Scholar 

  • Balls, A. K., and E. F. Jansen: Stoichiometric inhibition of chymotrypsin. Advanc. Enzymol. 13, 321–343 (1952).

    CAS  Google Scholar 

  • Bell, F. E., and L. A. Mounter: Studies of hog kidney acylase I. I. Comparison with hog kidney dialkylfluorophosphatase. J. biol. Chem. 233, 900–902 (1958).

    CAS  Google Scholar 

  • Bodansky, O.: Mechanism of inhibition of phosphatase activity by glycine. J. biol. Chem. 165, 605–613 (1946).

    PubMed  CAS  Google Scholar 

  • Casida, J. E.: Metabolism of organophosphorus insecticides in relation to their antiesterase activity, stability and residual properties. J. Agric. Food Chem. 4, 772–785 (1956).

    Article  CAS  Google Scholar 

  • Cohen, J. A., R. A. Oosterbaan, H. S. Jansz and F. Berend: The active site of esterases. J. Cell. Comp. Physiol. 54, Suppl. 1, 231–244 (1959).

    Article  Google Scholar 

  • Cohen, J. A., and M. G. P. J. Warringa: The fate of Pia labelled diisopropyl fluorophosphonate in the human body and its use as a labelling agent in the study of the turnover of blood plasma and red cells. J. clin. Invest. 33, 459–467 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. A.: Purification and properties of dialkylfluorophosphatase. Biochim. biophys. Acta 26, 29–39(1957).

    Article  PubMed  CAS  Google Scholar 

  • Davison, A. N.: The conversion of Schradan (OMPA) and parathion into inhibitors of cholinesterase by mammalian liver. Biochem. J. 61, 203–209 (1955).

    PubMed  CAS  Google Scholar 

  • Diggle, W. M., and J. C. Gage: Cholinesterase inhibition in vitro by 0,0-diethyl-0-p-nitrophenyl thiophosphate (parathion, E 605). Biochem. J. 49, 491–494 (1951).

    PubMed  CAS  Google Scholar 

  • Dubois, K. P., J. Doull and J. M. Coon: Studies on the toxicity and pharmacological action of octamethyl pyrophosphoramide (OMPA, Pestox III). J. Pharmacol. exp. Ther. 99, 376–393 (1950).

    PubMed  CAS  Google Scholar 

  • Fenwick, M. C.: The production of an esterase inhibitor from Schradan in the fat body of the desert locust. Biochem. J. 70, 373–381 (1958).

    PubMed  CAS  Google Scholar 

  • Frankel-Conrat, H.: Chemical studies of enzymes and other proteins. J. cell. comp. Physiol. 47, Suppl. 1, 133–149 (1956).

    Google Scholar 

  • Fukuto, T. R., R. L. Metcalf, R B March and M. G. Maxon: Chemical behavior of systox isomers in biological systems. J. Econ. Entmol. 48, 347–354 (1955).

    CAS  Google Scholar 

  • Gage, J. C.: A cholinesterase inhibitor derived from 0,0-diethyl-0-p-nitrophenyl thiophosphate in vivo. Biochem. J. 54, 426–430 (1953).

    PubMed  CAS  Google Scholar 

  • Gardiner, J. E., and B. A. Kilby: Some observations on the fate of bis(dimethylamino)phosphorus anhydride in the rabbit. Biochem. J. 46, xxxii—xxxiii (1950).

    Google Scholar 

  • Goldstein, D. B., and A. J. Goldstein: An adaptive bacterial cholinesterase from a pseudomonas species. J. gen. Microbiol. 8, 8–17 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Hall, S. A.: Organic phosphorus insecticides. Advances in Chem. Ser. No. I, 150–159 (1950).

    Google Scholar 

  • Harvey, A. M., J. L. Lilienthal jr., D. Grob, B. F. Jones and S. A. Talbot: The adminis-tration of diisopropyl fluorophosphate to man. IV. Johns Hopkins Hosp. Bull. 81, 267–292 (1947).

    Google Scholar 

  • Herrman, B., and R. Pulver: Der enzymatische Abbau des Insectizids Chlorophan (Dimethyl-(1-Methoxy-2, 2-dichlorovinyl)Phosphat] als. Entgiftungsreaktion. Arch. Int. Pharmacodyn. 117, 223–231 (1957).

    Google Scholar 

  • Hobbiger, F.: Inhibition of cholinesterases by irreversible inhibitors in vitro and in vivo. Brit. J. Pharmacol. 6, 21–36 (1951).

    PubMed  CAS  Google Scholar 

  • Hoskin, F. C. G., and G. S. Trick: Stereospecificity in the enzymatic hydrolysis of tabun and acetyl-methylcholine chloride. Canad. J. Biochem. 33, 963–969 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Jandorf, B. J.: Mechanism of reaction of di-n-propyl-2,2-dichlorovinyl phosphate (DDP) with esterases. J. Agric. Food Chem. 4, 853–858 (1956).

    Article  CAS  Google Scholar 

  • Jandorf, B. J., and P. D. Mcnamara: Distribution of radiophosphorus in rabbit tissues after injection of phosphorus-labelled diisopropyl fluorophosphate. J. Pharmacol. 98, 77–84 (1950).

    CAS  Google Scholar 

  • Jansen, E. F., A. L. Curl and A. K. Balls: Reaction of -chymotrypsin with analogues of diisopropyl fluorophosphate. J. Biol. Chem. 190, 557–562 (1951).

    PubMed  CAS  Google Scholar 

  • Koshland, D. E., jr., W. J. Ray, jr. and M. J. Erwin: Protein structure and enzyme action. Fed. Proc. 17, 1143–1150 (1958).

    Google Scholar 

  • March, R. B., T. R. Fukuto, R. L. Metcalf and M. G. Maxon: Fate of P32-labeled malathion in the laying hen, white mouse and american cockroach. J. Econ. Entmol. 49, 185–195 (1956).

    CAS  Google Scholar 

  • Maiur, A.: An enzyme in animal tissues capable of hydrolyzing the phosphorusfluorine bond of alkyl fluorophosphates. J. biol. Chem. 164, 271–289 (1946).

    Google Scholar 

  • Metcalf, R. L.: Organic Insecticides. Their Chemistry and Mode of Action. New York and London: Interscience Publ. 1955.

    Google Scholar 

  • Metcalf, R. L., and R. B. March: Studies of the mode of action of parathion and its derivatives and their toxicity to insects. J. Econ. Entmol. 4Metcalf, R. L. 2, 721–728 (1949).

    Google Scholar 

  • Metcalf, R. L.:Further studies on the mode of action of organic thionophosphate insecticides. Ann. Entomol. Soc. Am. 46, 63–74 (1953).

    CAS  Google Scholar 

  • Mounter, L. A.: Some studies of enzymatic effects of rabbit serum. J. biol. Chem. 209, 813–817 (1954).

    Google Scholar 

  • Mounter, L. A.: The complex nature of dialkylfluorophosphatases of hog and rat liver and kidney. J. biol. Chem. 215, 705–711 (1955).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A.: Dialkylfluorophosphatase of kidney. IV. Dissociation constant of active groups. J. biol. Chem. 219, 677–683 (1956).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A.: Identity of diisopropyffluorophosphatase and acylase. Fed. Proc. 15, 317 (1956).

    Google Scholar 

  • Mounter, L. A., H. C. Alexander, K. D. Tuck and L. T. H. Dien: The pH dependence and dissociation constants of esterases and proteases treated with diisopropyl fluorophosphate. J. biol. Chem. 226, 867–872 (1957a).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A., R. F. Baxter and A. Chanutin: Dialkylfluorophosphatases of microorganisms. J. biol. Chem. 215, 699–704 (1955).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A., and A. Chanutin: Dialkylfluorophosphatase of kidney. II. Studies of activation and inhibition by metals. J. biol. Chem. 204, 837–846 (1953b).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A., and A. Chanutin: Dialkylfluorophosphatase of kidney. III. Studies of activation and inhibition by cofactors. J. biol. Chem. 210, 219–226 (1954).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A., and L. T. H. Dien: Dialkylfluorophosphatase of kidney. V. The hydrolysis of organo-phosphorus compounds. J. biol. Chem. 219, 685–690 (1956).

    CAS  Google Scholar 

  • Mounter, L. A., and L. T. H. Dien and A. Chanutrn: The distribution of dialkylfluorophosphatases in the tissues of various species. J. biol. Chem. 215, 691–697 (1955).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A., C. S. Floyd and A. Chanutin: Dialkylfluorophosphatase of kidney. I. Purification and properties. J. biol. Chem. 204, 221–232 (1953a).

    CAS  Google Scholar 

  • Mounter, L. A., and K. D. Tuck: Dialkylfluorophosphatases of microorganisms. II. Substrate specificity studies. J. biol. Chem. 221, 537–541 (1956).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A., and K. D. Tuck,. C. Alexander and L. T. H. Dien: The reactivity of esterases and proteases in the presence of organophosphorus compounds. J. biol. Chem. 226, 873–879 (1957b).

    PubMed  CAS  Google Scholar 

  • Neurath, H., and B. S. Hartley: The hydrolysis of peptide and ester bonds by proteolytic nzymes. J. cell. comp. Physiol. 54, Suppl. 1, 179–202 (1959).

    Article  Google Scholar 

  • O’brien, R. D.: Activation of thionophosphates by liver microsomes. Nature (Lond.) 183, 121–122 (1959a).

    Article  Google Scholar 

  • O’brien, R. D.: Comparative toxicology of some organophosphorus compounds in insects and mammals. Canad. J. Biochem. 37, 1113–1122 (1959b).

    Article  PubMed  Google Scholar 

  • O’brien, R. D.: Toxic Phosphorus Esters. New York: Academic Press 1960.

    Google Scholar 

  • O’neill, J. J.: Ph.D. Thesis, University of Maryland (1954).

    Google Scholar 

  • O’neill, J. J., T. Wagner-Jauregg, Y. Snider, C. Castle and M. Strolberg: Purification and properties of kidney phosphofluorase. Fed. Proc. 14, 261 (1954).

    Google Scholar 

  • Plapp, F. W., and J. E. Casida: Hydrolysis of the alkyl-phosphate bond in certain dialkyl aryl phosphorothioate insecticides in rats, cockroaches and alkali. J. Econ. Entmol. 51, 800–803 (1958a).

    CAS  Google Scholar 

  • Plapp, F. W.: ovine metabolism of organophosphorus insecticides. II. Metabolic fate of 0,0-dimethyl0(2,4,5-trichlorophenyl)phosphorothioate in rats and cows. J. Agric. Food. Chem. 6, 662–667 (1958b).

    Article  CAS  Google Scholar 

  • Scaife, J. F., and D. H. Campbell: The distruction of 0,0-diethyl-S-2-diethyl aminoethyl phosphorothiolate by liver microsomes. Canad. J. Biochem. 37, 297–305 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Schrader, G.: Die Entwicklung neuer Insektizide auf Grundlage von organischen Fluor-und Phosphorverbindungen. Monographie No. 62, 2. Aufl., Weinheim: Verlag Chemie 1952.

    Google Scholar 

  • Tsuyuki, H., M. A. Stahmann and J. E. Casida: Preparation, purification, isomerization and biological properties of octamethylpyrophosphoramide N-oxide. J. Agric. Food Chem. 3, 922–932 (1955).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mounter, L.A. (1963). Metabolism of Organophosphorus Anticholinesterase Agents. In: Koelle, G.B. (eds) Cholinesterases and Anticholinesterase Agents. Handbook of Experimental Pharmacology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-99875-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-99875-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-99877-5

  • Online ISBN: 978-3-642-99875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics