Skip to main content

Approximate Structured Optimization by Cyclic Block-Coordinate Descent

  • Chapter
Applied Mathematics and Parallel Computing

Abstract

A uniform randomized exponential-potential block-coordinate descent method for the approximate solution of block-angular convex resource-sharing programs was analyzed in [5] and for the linear case in [14]. The former method is rendered deterministic by replacing its random block selection by arbitrary sweeps of its block coordinates, akin to classical implementations of Gauss-Seidel relaxation and coordinate descent in unconstrained optimization, recently used in concurrent network flows [15]. The general block-angular model consists of K disjoint convex compact sets (“blocks”) and M nonnegative convex block-separable inequalities (“coupling constraints”). It is shown that for linear coupling constraints and for a given but arbitrary relative accuracy ε ∈ (0, 1], the proposed derandomized algorithm runs in O(K ln M(ε −2 + ln min{K, M}) coordination steps or block optimizations, which is lower than all other existing bounds. It is also shown that this bound on coordination steps also applies to a reformulation of the above general nonlinear problem.

Research supported by the National Science Foundation under grant CCR-9208539.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. BALAS AND E. ZEMEL, An algorithm for large zero-one knapsack problems, Operations Research 28 (1980), 1131–1154.

    Google Scholar 

  2. M. S. BAZARAA, H. D. SHERALI AND C.M. SHETTY, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, New York, 1993.

    MATH  Google Scholar 

  3. M.E. DYER, An 0(n) algorithm for the multiple-choice knapsack linear program, Mathematical Programming 29 (1984), 57–63.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.V. GOLDBERG, A natural randomization strategy for multicommodity flow and related problems, Information Processing Let. 42 (1992), 249–256.

    Article  MATH  Google Scholar 

  5. M. D. GRIGORIADIS AND L. G. KHACHIYAN, Fast approximation schemes for convex programs with many blocks and coupling constraints, SIAM; J. Optimization 4 (1994), 86–107.

    Google Scholar 

  6. M. D. GRIGORIADIS AND L. G. KHACHIYAN, Coordination complexity of parallel price-directive decomposition, TR 94–19, DI- MACS, Rutgers Univ., New Brunswick, NJ, April 1994. To appear in Mathematics of Operations Research.

    Google Scholar 

  7. M. D. GRIGORIADIS AND L. G. KHACHIYAN,, Approximate minimum-cost multicommodity flows in 6(E -2 KNM) time, TR 95–13, DIMACS, Rutgers Univ., New Brunswick, NJ, May, 1995. To appear in Mathematical Programming.

    Google Scholar 

  8. E. ISAACSON AND H.B. KELLER, Analysis of Numerical Methods, John Wiley and Sons, NY, 1966.

    Google Scholar 

  9. E.L. LAWLER AND J. LABETOULLE, On preemptive scheduling of unrelated parallel processors by linear programming, J. Assoc. Comput. Mach., 25 (1978), 612–619.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.K. LENSTRA, D.B. SHMOYS AND E. TARDOS, Approximation algorithms for scheduling unrelated parallel machines,Mathematical Programming, 24 (1990), 259272.

    Google Scholar 

  11. T. LEIGHTON, F. MAKEDON, S. PLOTKIN, C. STEIN, E. TARDOS AND S. TRAGOUDAS, Fast approximation algorithms for multicommodity flow problems, Journal of Computer System Sciences, 50 (1995), 228–243.

    Article  MathSciNet  MATH  Google Scholar 

  12. T.S. MOTZKIN, New technique for linear inequalities and optimization, in Project SCOOP Symp. on Linear Inequalities and Programming, Planning Res. Div., U.S. Air Force, Washington, D.C., 1952.

    Google Scholar 

  13. N. MEGIDDO AND A. TAMIR, Linear time algorithms for some separable quadratic programming problems, Operations Research Letters 13 (1993), 203–211.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.A. PLOTKIN, D.B. SHMOYS AND E. TARDOS, Fast approximation algorithms for fractional packing and covering problems, Mathematics of Operations Research, 20 (1995), 257–301.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. RADZIK, Fast deterministic approximation for the multicommodity flow problem, Proc. 6th ACM-SIAM Symp. on Discrete Algorithms (1995), 486–492.

    Google Scholar 

  16. F. SHAHROKHI AND D.W. MATULA, The maximum concurrent flow problem, J. of the ACM 37 (1990) 318–334.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.L. SCHULTZ AND R.R. MEYER, An interior point method for block angular optimization, SIAM J. Optimization 1 (1991), 583–602.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. ZADEH, A note on cyclic coordinate ascent method, Management Science 3 (1970) 643–644.

    Google Scholar 

  19. W.I. ZANGWILL, Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, NJ, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Villavicencio, J., Grigoriadis, M.D. (1996). Approximate Structured Optimization by Cyclic Block-Coordinate Descent. In: Fischer, H., Riedmüller, B., Schäffler, S. (eds) Applied Mathematics and Parallel Computing. Physica-Verlag HD. https://doi.org/10.1007/978-3-642-99789-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-99789-1_25

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-642-99791-4

  • Online ISBN: 978-3-642-99789-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics