Graphentheoretische Probleme und Methoden — ein Überblick über neuere Entwicklungen (Übersichtsvortrag)

  • H. Noltemeier
Conference paper
Part of the Vorträge der Jahrestagung 1975 DGOR / SVOR book series (ORP, volume 1975)

Zusammenfassung

Die Graphentheorie gilt gemeinhin als ein nützliches Instrument zur Beschreibung und Analyse von Systemen, zwischen deren Elementen gewisse Beziehungen bestehen, deren inhaltliche Ausgestaltung außerordentlich vielfältig sein kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. 1.
    Aho, A.V., J.E. Hopcroft und J.D. Ullman: The design and analysis of computer algorithms, Addison-Wesley, Reading, Mass.,1974Google Scholar
  2. 2.
    Balas, E. und M. Padberg: On the Set Covering Problem, Op. Research,20,1972Google Scholar
  3. 3.
    Balas, E., und M. Padberg: On the Set Covering Problem II, Op. Research, 23, 1975Google Scholar
  4. 4.
    Barr, R.S., F. Glover und D. Klingman: An improved version of the out-of-kilter method and a comparative study of computer codes, Mathematical Programming,7, 1974Google Scholar
  5. 5.
    Basili, V.R.,: The SIMPL Family of Programming Languages and Compilers, erscheint in: Ergebnisse der praktischen Informatik, Hanser-Verlag, 1976Google Scholar
  6. 6.
    Basili, V.R., W.R. Rheinboldt, und C.K. Mesztenyi: On a programming language for graph algorithms, BIT, 12, 1972Google Scholar
  7. 7.
    Bayer, R.: On the Integrity of Data Bases and Resource Locking, erscheint in: IBM-Proceedings über Datenbanksysteme, 1976Google Scholar
  8. 8.
    Bellmore, M. und H.D. Ratliff: Set covering and involutory bases, Management Science, 18, 3, 1971CrossRefGoogle Scholar
  9. 9.
    Berge, C.: Graphs and Hypergraphs, North-Holland, 1973Google Scholar
  10. 10.
    Bruno, J., E.G. Coffman und R. Sethi: Algorithms for Minimizing Mean Flow Time, in: Information Processing 74, North-Holland 1974Google Scholar
  11. 11.
    Crespi-Reghizzi, S. und R. Morpurgo: A language for treating graphs, CACM 13, 5, 1970Google Scholar
  12. 12.
    Edmonds, J. und R.M. Karp: Theoretical improvements in algorithmic efficiency for network flow problems, JACM, 19, 2, 1972CrossRefGoogle Scholar
  13. 13.
    Erdös, P. und D.J. Kleitman: Extremal problems among subsets of a set, Discrete Mathematics, 8, 1974Google Scholar
  14. 14.
    Garfinkel, R.S. und G.L. Nemhauser: Integer programming, John Wiley, New·York, 1972Google Scholar
  15. 15.
    Garfinkel, R.S. und G.L. Nemhauser: Optimal Set Covering: A Survay. In: Perspectives of Optimization, Ed. by Geoffrion, Addison-Wesley, Reading, Mass., 1972Google Scholar
  16. 16.
    Hässig, K.: Ein Markierungsalgorithmus zur Lösung von allgemeinen Transportproblemen mit einem Bündel, ZOR, 18, 1974Google Scholar
  17. 17.
    Helbig-Hansen, K. und J. Krarup: Improvements of the Held-Karp algorithm for the symmetric traveling-salesman problem, Mathematical Programming, 7, 1974Google Scholar
  18. 18.
    Held, M. und R.M. Karp: The traveling salesman problem and minimum spanning trees: II, Mathematical Programming, 1, 1971Google Scholar
  19. 19.
    Hoffman, A.J.: A generalization of max flow - min cut, Mathematical Programming, 6, 1974Google Scholar
  20. 20.
    Karp, R.M.: Reducibility among combinatorial problems, in: Complexity of computer computations, Plenum Press, New York, 1972Google Scholar
  21. 21.
    Kerr, L.R.: The effect of algebraic structure on the computational complexity, Ph. D. Thesis, Cornell University, Ithaca, 1970Google Scholar
  22. 22.
    King, C.A.: A graph theoretic programming language, in: Graph Theory and Computing (ed. Read), Academic Press, 1972Google Scholar
  23. 23.
    Krolak, P. und W. Felts: A man-machine approach toward solving the traveling salesman problem, CACM, 14, 1971Google Scholar
  24. 24.
    Lawler, E.: A “Quasi-Polynomial” algorithm for sequencing jobs to minimize total tardiness, erscheint in: Annals of Discrete Mathematics, 1, 1976Google Scholar
  25. 25.
    Lemke, C.E., H.M. Salkin und K. Spielberg: Set covering by single branch enumeration with linear programming subproblems, Op. Research, 19, 1971Google Scholar
  26. 26.
    Mühlbacher, J. und A. Zeyn: Konzept einer virtuellen Maschirie zur Strukturmanipulation, erscheint in: Ergebnisse der praktischen Informatik, Hanser-Verlag, 1976Google Scholar
  27. 27.
    Murty, K.: On the set representation and the set covering problem, in: Lecture Notes in Economics and Mathematical Systems, 86, Springer, 1973Google Scholar
  28. 28.
    Nemhauser, G.L. und L.E. Trotter: Vertex packings; structural properties and algorithms, Mathematical Programming, 8, 1975Google Scholar
  29. 29.
    Nieminen, J.: Minimum decomposition of partially ordered sets into chains, ZOR, 19, 1975Google Scholar
  30. 30.
    Noltemeier, H.: Graphentheorie mit Algorithmen und Anwendungen, de Gruyter-Lehrbuch, Berlin, 1975Google Scholar
  31. 31.
    Noltemeier, H.: Auswahlprobleme, Op. Research Verfahren, IX, 1971Google Scholar
  32. 32.
    Oettli, W.: An iterative method, havfng linear rate of convergence, for solving a pair of dual linear programs, Mathematical Programming, 3, 1972Google Scholar
  33. 33.
    Pape, U.: Implementation and efficiency of Moore-algorithms for the shortest route problem, Mathematical Programming, 7, 1974Google Scholar
  34. 34.
    Perl, J.: Graphenalgorithmen und Überdeckungeprobleme, Computing, 13, 1974Google Scholar
  35. 35.
    Pratt,T.W. und D.P. Friedman: A language extension for graph processing and its formal semantics, CACM, 14, 1971Google Scholar
  36. 36.
    von Randow, R.: Introduction to the Theory of Matroids, Lecture Notes in Economics and Mathematical Systems, Springer, 1975Google Scholar
  37. 37.
    Rosenthal, A.: On finding shortest paths in nonnegative networks, Discrete Mathematics, 10, 1974Google Scholar
  38. 38.
    Smith, T.H.C., V. Srinivasan und G.L. Thompson: Computational Experience with Three Subtour Elimination Methods for the Asymmetric Traveling Salesman Problem, Technical Report, Carnegie-Mellon University, Pittsburgh, 1975Google Scholar
  39. 39.
    Tabourier,Y.: All shortest distances in a graph. An improvement to Dantzig’s inductive algorithm, Discrete Mathematics, 4, 1973Google Scholar
  40. 40.
    Tarjan, R.E.: Depth-first search and linear graph algorithms, SIAM Journal of Computing, 1, 2, 1972CrossRefGoogle Scholar
  41. 41.
    Tarjan, R.E. und J.E. Hopcroft: Efficient algorithms for graph manipulation. CACM, 16, 1973Google Scholar
  42. 42.
    White, L.J. und M.L. Gillenson: An efficient algorithm for minimum k-cover in weighted graphs, Mathematical Programming, 8, 1975Google Scholar

Copyright information

© Physica-Verlag, Rudolf Liebing KG, Würzburg 1976

Authors and Affiliations

  • H. Noltemeier
    • 1
  1. 1.GöttingenDeutschland

Personalised recommendations