Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 85 Accesses

Abstract

X-ray angiography remains the gold standard for the study of intracranial vessels (Brant- Zawadzki et al. 1983). For some time now, conventional cut film angiography has been replaced by digital subtraction techniques. After initial over-enthusiasm for the intravenous application of digital subtraction angiography, the method was rapidly abandoned due to insufficient vessel contrast, super-imposition of vascular territories, and the requirement of good patient cooperation (Wilms et al. 1983). Nowadays the intra-arterial selective and superselective study of the intracranial vessels with digital subtraction is routinely used for the visualization of the intracranial Vessels (Brant-Zawadzki et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee R (1990) Artifacts in maximum-intensity-projection display of MR angiograms. Am J Roentgenol 154:623–629

    CAS  Google Scholar 

  • Atkinson D, Brant-Zawadzki M, Gillan G, Purdy D, Laub G (1994) Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology 190:890–894

    PubMed  CAS  Google Scholar 

  • Blatter DD, Parker DL, Robinson RO (1991) Cerebral MR angiography with multiple overlapping thin slab acquisition. 1. Quantitative analysis of vessel visibility. Radiology 179:805–811

    PubMed  CAS  Google Scholar 

  • Blatter DD, Parker DL, Ahn SS et al. (1992) Cerebral MR angiography with multiple overlapping thin slab acquisition. II. Early chnical experience. Radiology 183:379–389

    PubMed  CAS  Google Scholar 

  • Blatter DD, Bahr AL, Parker DL, Robison RO, Kimball JA, Perry DM, Horn S (1993) Cervical carotid MR angiography with multiple overlapping thin slab acquisitions: comparison with conventional angiography. AJR 161:1269–1277

    PubMed  CAS  Google Scholar 

  • Bosmans H (1992) Optimization procedures for magnetic resonance angiography acquisitions. PhD Thesis, KU Leuven, Belgium, 1992

    Google Scholar 

  • Bosmans H, Marchal G, Van Hecke P, Vandermeulen D, Suetens P (1990) Magnetic resonance angiography: techniques, prospects and limitations. Front Eur Radiol 7:69–86

    Article  Google Scholar 

  • Bosmans H, Marchal G, Van Hecke P et al. (1992) MRA review. Clin Imaging 16:152–167

    Article  CAS  Google Scholar 

  • Bosmans H, Marchal G, Lukito G et al. (1995) Contrast enhanced time-of-flight MR angiography of the brain: comparison of acquisition techniques in healthy volunteers. AJR (in press)

    Google Scholar 

  • Brant-Zawadzki M, Gould R, Norman D, Newton TH, Lane B (1983) Digital subtraction cerebral angiography by intraarterial injection: comparison with conventional angiography. Am J Roentgenol 140:347–353

    CAS  Google Scholar 

  • Chakeres DW, Schmalbrock P, Brogan M et al. (1991) Normal venous anatomy of the brain: demonstration with gadopentetate dimeglumine in enhanced 3-D MR angiography. AJR 156:161–172

    PubMed  CAS  Google Scholar 

  • Creasy JL, Price RR, Presbey T et al. (1990) Gadolinium-enhanced MR angiography. Radiology 175:280–283

    PubMed  CAS  Google Scholar 

  • Curnes JT, Shogry MEC, Clark DC et al. (1993) MR angiographic demonstration of an intracranial aneurysm not seen on conventional angiography. AJNR 14:971–977

    PubMed  CAS  Google Scholar 

  • De Bray JM, Joseph PA, Jeanvoine H et al. (1988) Transcranial Doppler evaluation of middle cerebral artery stenosis. J Ultrasound Med 7:611–616

    PubMed  Google Scholar 

  • Dumoulin CL, Souza SP, Walker MF (1989) Three-dimen- sional phase contrast angiography. Magn Reson Med 9:139–149

    Article  PubMed  CAS  Google Scholar 

  • Edelman RR, Wentz KU, Mattle HP et al. (1989) Intracerebral arteriovenous malformations: evaluation with selective MR angiography and venography. Radiology 173:831–837

    PubMed  CAS  Google Scholar 

  • Edelman RR, Mattle HP, O’Reilly GV et al. (1990a) Magnetic resonance imaging of the flow dynamics in the circle of Willis. Stroke 21:56–66

    Article  PubMed  CAS  Google Scholar 

  • Edelman RR, Mattle HP, Wallner B et al. (1990b) Extracranial carotid arteries: evaluation with “black blood” MR angiography. Radiology 177:45–50

    PubMed  CAS  Google Scholar 

  • Edelman RR, Ahn SS, Chien D et al. (1992) Improved time-of- flight MR angiography of the brain with magnetization contrast. Radiology 184:395–403

    PubMed  CAS  Google Scholar 

  • Evans AJ, Richardson DB, Tien R et al. (1993) Poststenotic signal loss in MR angiography: effects of echo time, flow compensation and fractional echo. AJNR 14:721–729

    PubMed  CAS  Google Scholar 

  • Felbert S, Birbamer G, Aichner F et al. (1992) Magnetic resonance imaging and angiography in hemifacial spasm. Neuroradiology 34:413–416

    Article  Google Scholar 

  • Finn JP, Zisk JHS, Edelman RR, Wallner BK, Hartnell GG, Stokes KR, Longmaid HE (1993) Central venous occlusion: MR angiography. Radiology 187:245–251

    PubMed  CAS  Google Scholar 

  • Gao J-H, Holland SK, Gore JC (1988) Nuclear magnetic resonance signal from flowing nuclei in rapid imaging using gradient echoes. Med Phys 15:809–814

    Article  PubMed  CAS  Google Scholar 

  • Gelbert F, Assouline E, Hodes JE et al. (1991) MRI in spontaneous dissection of vertebral and carotid arteries: 15 cases studied at 0.5 Tesla. Neuroradiology 33:111–113

    Article  PubMed  CAS  Google Scholar 

  • Goldberg HT (1992) Angiography of extra- and intracranial occlusive cerebrovascular disease. Neuroimaging Clin North Am 2:487–507

    Google Scholar 

  • Gouliamos A, Gotsis E, Vlahos L et al. (1992) Magnetic resonance angiography compared to intra-arterial digital subtraction angiography in patients with subarachnoid haemorrhage. Neuroradiology 35:46–49

    Article  PubMed  CAS  Google Scholar 

  • Gughelmi G, Vinuela F, Dion J, Duckwiler G (1992) Endovascular treatment of posterior circulation aneurysms by electrothrombosis using electrically detachable coils. J Neurosurg 77:515–524

    Article  Google Scholar 

  • Graves VB, Duff TA (1990) Intracranial arteriovenous malformations: current imaging and treatment. Invest radiol 25:952–960

    Article  PubMed  CAS  Google Scholar 

  • Haacke EM, Masaryk TJ, Wielopolski PA et al. (1990) Optimizing blood vessel contrast in fast three-dimensional MRI. Magn Reson Imaging 14:202–221

    CAS  Google Scholar 

  • Hankey GJ, Warlow CP, Sellar RJ (1990) Cerebral angiographic risk in mild cerebrovascular disease. Stroke 21:209–222

    Article  PubMed  CAS  Google Scholar 

  • Hausmann R, Lewin JS, Laub G (1991) Phase-contrast MR angiography with reduced acquisition time: new concepts in sequence design. J Magn Reson Imaging 11:415–422

    Article  Google Scholar 

  • Heiserman JE, Drayer BP, Keller PJ, Fram EK (1992) Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology 185:667–673

    PubMed  CAS  Google Scholar 

  • Huston J III, Ehman RL (1993) Comparison of time-of-flight and phase-contrast MR neuroangiographic techniques. Radiographics 13:5–19

    PubMed  Google Scholar 

  • Katz BH, Quencer RM, Kaplan JO et al. (1989) MR imaging of intracranial carotid occlusion. AJNR 10:345–350

    Google Scholar 

  • Kauczor HU, Engenhart R, Layer G et al. (1993) 3D TOF MR angiography of cerebral arteriovenous malformations after radiosurgery. J Comput Assist Tomogr 17:184–190

    Article  PubMed  CAS  Google Scholar 

  • Laub GA, Kaiser WA (1988) MR angiography with gradient motion refocusing. J Comput Assist Tomogr 12:377–382

    Article  PubMed  CAS  Google Scholar 

  • Lewin JS, Laub G, Hausmann R (1991) A direct comparison of three time-of-flight techniques. AJR 12:1133–1139

    CAS  Google Scholar 

  • Lin W, Tkach JA, Haacke EM, Masaryk TJ (1993) Intracranial MR angiography: apphcation of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences. Radiology 186:753–761

    PubMed  CAS  Google Scholar 

  • Lisovoski F, Rosseaux P (1993) Cerebral infarction in young people, a study of 148 patients with early cerebral angiography. J Neurol Neurosurg Psychiatry 50:609–614

    Google Scholar 

  • Marchal G, Bosmans H, Van Fraeyenhoven L et al. (1990) Intracranial vascular lesions: optimization and clinical evaluation of three-dimensional time-of-flight MR angiography. Radiology 175:443–448

    PubMed  CAS  Google Scholar 

  • Marchal G, Michiels J, Bosmans H et al. (1992) Contrast-enhanced MRA of the brain. J Comput Assist Tomogr 16: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Masaryk AM, Ross JS, Dicello M, Modic MT, Paranandi L, Masaryk TJ (1991) 3DFT magnetic resonance angiography of the carotid bifurcation: potential and limitations as a screening examination. Radiology 179:797–804

    PubMed  CAS  Google Scholar 

  • Masaryk TJ, Modic MT, Ross JS et al. (1989) Intracranial circulation: preliminary clinical results with three-dimensional (volume) MR angiography. Radiology 171:801–806

    PubMed  CAS  Google Scholar 

  • Mathurin P, Hammer F, Duprez T, Goffette P, Grandin C (1993) Survey of intracerebral vasospasm after subarachnoid hemorrhage with 3D MR angiography. Presented at the XlXth Congress of the ESNR, September 8–11, 1993

    Google Scholar 

  • Mattle HP, Wentz KU (1992) Selective magnetic resonance angiography of the head. Cardiovasc Intervent Radiol 15:65–70

    PubMed  CAS  Google Scholar 

  • Mattle HP, Wentz KU, Edelman RR et al. (1991) Cerebral venography with MR. Radiology 178:453–458

    PubMed  CAS  Google Scholar 

  • Michiels J, Bosmans H, Nuttin B et al. (1995) The use of magnetic resonance angiography in stereotactic neurosurgery. J Neurosurg 82:982–987

    Article  PubMed  CAS  Google Scholar 

  • Nadel L, Braun IF, Kraft KA et al. (1990) MRI of intracranial sinovenous thrombosis: the role of phase imaging. Magn Reson Imaging 8:315–320

    Article  PubMed  CAS  Google Scholar 

  • Nadel L, Braun IF, Kraft KA et al. (1991) Intracranial vascular abnormalities: value of MR phase imaging to distinguish thrombus from flowing blood. AJR 156:373–380

    PubMed  CAS  Google Scholar 

  • Nüssel F, Wegmüller H, Huber P (1991) Comparison of magnetic resonance angiography, magnetic resonance imaging and conventional angiography in cerebral arteriovenous malformation. Neuroradiology 33:56–61

    Article  PubMed  Google Scholar 

  • Osborn A (1994) Intracranial aneurysm in diagnostic neuroradiology. Mosby, St. Louis, pp 248–283

    Google Scholar 

  • Padayachee TS, Bingham JB, Graves MJ et al. (1991) Dural sinus thrombosis: diagnosis and follow-up by magnetic resonance angiography and imaging. Neuroradiology 33:165–167

    Article  PubMed  CAS  Google Scholar 

  • Pernicone JR, Siebert JE, Potchen EJ et al. (1990) Three-dimen- sional phase-contrast MR angiography in the head and neck: preliminary report. AJNR 11:457–466

    PubMed  CAS  Google Scholar 

  • Pernicone JR, Thorp KE, Ouimette MV et al. (1992) Magnetic resonance angiography in intracranial vascular disease. Semin Ultrasound CT MR 13:256–273

    PubMed  CAS  Google Scholar 

  • Quisling RG, Peters KR, Friedman WA, Tart RP (1991) Persistent nidus blood flow in cerebral arteriovenous malformation after stereotactic radiosurgery: MR imaging assessment. Radiology 180:785–791

    PubMed  CAS  Google Scholar 

  • Ross JS, Masaryk TJ, Modic MT et al. (1990) Intracranial aneurysms: evaluation by MR angiography. AJNR 11:449–456

    PubMed  CAS  Google Scholar 

  • Ruggieri PM, Laub GA, Masaryk TJ et al. (1989) Intracranial circulation: pulse sequence considerations in three-dimensional (volume) MR angiography. Radiology 171: 785–791

    PubMed  CAS  Google Scholar 

  • Ruggieri PM, Masaryk TJ, Ross JS et al. (1992) Intracranial magnetic resonance angiography. Cardiovasc Intervent Radiol 15:71–81

    PubMed  CAS  Google Scholar 

  • Runge VM, Krisch JE, Lee C (1993) Contrast-enhanced MR angiography. J Magn Reson Imaging 3:233–239

    Article  PubMed  CAS  Google Scholar 

  • Schmalbrock P, Yuan C, Chakeres DW et al. (1990) Volume MR angiography: methods to achieve very short echo times. Radiology 175:861–865

    PubMed  CAS  Google Scholar 

  • Schuierer G, Huk WJ, Laub G (1992) Magnetic resonance angiography of intracranial aneurysms: comparison with intra-arterial digital subtraction angiography. Neuroradiology 35:50–54

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RB, Tice HM, Hooten SM, Hsu L, Stieg PH (1994) Evaluation of cerebral aneurysms with helical CT: correlation with conventional angiography and MR angiography. Radiology 192:717–722

    PubMed  CAS  Google Scholar 

  • Sevick RJ, Tsuruda JS, Schmalbrock P (1990) Three-dimensional time-of-flight MR angiography in the evaluation of cerebral aneurysms. J Comput Assist Tomogr 14:874–881

    Google Scholar 

  • Tkach JA, Masaryk TJ, Ruggieri PM et al. (1992) The use of tilted optimized nonsaturating excitation (TONE) RF pulses and MTC to improve the quality of MR angiograms of the carotid bifurcation. 11th annual scientific meeting of the SMRM. 8–14 August 1992, Berlin, 3905

    Google Scholar 

  • Tsuruda JS, Shimakawa A, Pelc NJ et al. (1991) Dural sinus occlusion: evaluation with phase sensitive gradient-echo MR imaging. AJR 157:139–146

    Google Scholar 

  • Tsuruda JS, Sevick RJ, Halbach VV (1992) Three-dimensional time-fo-flight MR angiography in the evaluation of intracranial aneurysms treated by endovascular balloon occlusion. AJNR 13:1129–1136

    PubMed  CAS  Google Scholar 

  • Turjman F, Massoud TF, Vinuela F, Sayre JW, Gughelmi G, Duckwiler G (1994) Aneurysms related to cerebral arteriovenous malformations: superselective angiographic assessment in 58 patients. AJNR 15:1601–1605

    PubMed  CAS  Google Scholar 

  • Vinuela F, Dion J, Lylyk P, Duckwiler G (1989) Update on interventional neuroradiology. AJR 153:23–33

    PubMed  CAS  Google Scholar 

  • Vogl TJ, Balzer JO, Stemmler J et al. (1992) MR angiography in children with cerebral neurovascular diseases: findings in 31 cases. AJR 159:817–823

    PubMed  CAS  Google Scholar 

  • Wallner B, Weidenmaier W, Vogl J et al. (1991) Darstelung zerebraler Flussdynamik mit MR Angiographie und selektiver vorsättigung: erste Erfahrungen. Fortschr Rontgenstr 155:460–464

    Article  CAS  Google Scholar 

  • Waugh JR, Sacharias N (1992) Artériographie comphcations in the DSA era. Radiology 182:243–246

    PubMed  CAS  Google Scholar 

  • Wilms G, Baert AL, Smits J, De Somer F (1983) Digital intravenous and intraarterial subtraction angiography. Fortschr Rontgenstr 138:140–147

    Article  CAS  Google Scholar 

  • Wilms G, Bosmans H, Marchal G, Demaerel PH, Goffin J, Plets C, Baert AL (1995) Magnetic resonance angiography of supratentorial brain tumors: comparison with selective digital subtraction angiography. Neuroradiology 37:42–47

    Article  PubMed  CAS  Google Scholar 

  • Wiznitzer M, Ruggieri PM, Masaryk TJ et al. (1990) Diagnosis of cerebrovascular disease in sickle cell anaemia by magnetic resonance angiography. J Pediatr 117:551–555

    Article  PubMed  CAS  Google Scholar 

  • Wolpert JM, Caplan LR (1992) Current rate of cerebral angiography in the diagnosis of cerebrovascular disease. AJR 159:191–197

    PubMed  CAS  Google Scholar 

  • Yamada I, Matsushima Y, Suzuki S (1992) Moyamoya disease: diagnosis with three-dimensional time-of-flight MR angiography. Radiology 184:773–778

    PubMed  CAS  Google Scholar 

  • Zimmerman RA, Bogdan AR, Gusnard DA (1992) Pediatric magnetic resonance angiography: assessment of stroke. Cardiovasc Intervent Radiol 15:60–64

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchal, G., Wilms, G., Bosmans, H. (1996). Intracranial Vessels. In: Arlart, I.P., Bongartz, G.M., Marchal, G. (eds) Magnetic Resonance Angiography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97926-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97926-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97928-6

  • Online ISBN: 978-3-642-97926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics