Skip to main content

Selection of conductors

  • Chapter
  • 1412 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

Overhead power lines are aimed at reasonable and reliable transmission of electric energy between two points. The conductors carry the electric energy and are, therefore, the most important components of an overhead power line. The expenditures necessary to purchase and install them correspond to something between 30 and 50 % of the total investment for an overhead line. Many different types of conductors have been used since overhead lines were first installed. In many industrialized countries there are standards for conductors, and also international ones from IEC [7.1] and CENELEC [7.2]. US American standards like [7.3, 7.4] and [7.5] are of widespread use as well. The EN standards replaced the national standards valid up to now in European countries; e. g. in Germany the conductor standards of the DIN 48 200 series (Table 7.1). From the standards, the best-suited conductor can be selected for a specific application. Besides that, special overhead conductors can also be manufactured, whenever deemed necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEC 61 089: Round wire concentric-lay electrical stranded conductors. Geneva, IEC, 1991

    Google Scholar 

  2. EN 50 182: Conductors for overhead lines – Round wire concentric-lay stranded conductors. Brussels, CENELEC, 2001

    Google Scholar 

  3. ASTM B231M: Concentric-lay-stranded 1350 aluminium conductors. New York, ASTM, 1995

    Google Scholar 

  4. ASTM B399: Concentric-lay-stranded 6201-T81 aluminium alloy conductors. New York, ASTM, 1995

    Google Scholar 

  5. ASTM B524: Concentric-lay-stranded aluminium conductors, aluminium alloy reinforced. New York, ASTM, 1999

    Google Scholar 

  6. EN 50341–3-4: Overhead electrical lines exceeding AC 45 kV. Part 3–4: National Normative Aspects for Germany. Brussels, CENELEC, 2001

    Google Scholar 

  7. IEC 60 050–466: International electrotechnical vocabulary – Chapter 466: Overhead lines. Geneva, IEC, 1995

    Google Scholar 

  8. DIN VDE 0210: Planning and design of overhead power lines with rated voltages above 1 kV. Berlin, VDE-Verlag, 1985

    Google Scholar 

  9. EN 50 183: Conductors for overhead lines – Aluminium-magnesium-silicon alloy wires. Brussels, CENELEC, 2000

    Google Scholar 

  10. EN 50 189: Conductors for overhead lines – Zinc-coated steel wires. Brussels, CENELEC, 2000

    Google Scholar 

  11. EN 61 232: Conductors for overhead lines – Aluminium-clad steel wires for electrical purposes. Brussels, CENELEC, 1995

    Google Scholar 

  12. International Annealed Copper Standards ((open))

    Google Scholar 

  13. Nefzger, J.: Vorsicht Hochspannung (Attention: High voltage!). Schwabach, Richard Bergner, 1973

    Google Scholar 

  14. Thrash, F. R.: Transmission conductors – A review of the design and selection criteria. Carrolton, Southwire, Technical support resources, 1999

    Google Scholar 

  15. Gaudry, M. et al.: Increasing the ampacity of overhead lines using homogeneous compact conductors. Cigré Report 22–201, 1998

    Google Scholar 

  16. EN 60 889: Hard-drawn aluminium wires for overhead line conductors. Brussels, CENELEC, 1997

    Google Scholar 

  17. Aluminium electrical conductor handbook. Waldorf, The Aluminium Association, 3rd edition 1989

    Google Scholar 

  18. EN 1715–2: Aluminium and aluminium alloys – Drawing stock – Part 2: Specific requirements for electrical applications. Brussels, CEN, 1998

    Google Scholar 

  19. Behrens, W.; Nefzger, J.; Philipps, W.: Aluminiumfreileitung (Overhead power lines using aluminium conductors). Düsseldorf. Aluminium-Verlag, 8th edition 1965

    Google Scholar 

  20. EN 10 244–2: Steel wire and wire products – Non-ferric metallic coatings on steel wires, Part 2: Zinc or zinc alloy coatings. Brussels, CEN 1995

    Google Scholar 

  21. Fink, D. G.; Beaty, H. W: Standard handbook for electrical engineers. New York, Mc Graw-Hill, 12th edition 1987

    Google Scholar 

  22. Oogi, I. et al.: Conductors for overhead transmission lines in Japan. Sendai, Cigré SC 22 Colloquium, Sendai Meeting, 1997

    Google Scholar 

  23. EN 10 002–1: Metallic materials – Tensile testing – Part 1: Method of testing at ambient temperature. Brussels, CEN, 2001

    Google Scholar 

  24. ASTM E8 MM: Standard test methods for tension testing of metallic materials. New York, ASTM, 2000

    Google Scholar 

  25. ISO 7802: Metallic materials – Wire – Wrapping test. Geneva, ISO, 1983

    Google Scholar 

  26. IEC 60 468: Method of measurement of resistivity of metallic materials. Geneva, IEC, 1974

    Google Scholar 

  27. Köhler, W.: Die Wirtschaftlichkeit von Alumoweld beim Einsatz in Freileitungen (Economics of aluminium-clad steel used for overhead lines). Elektrizitätswirtschaft 74 (1975), pp. 691 to 695

    Google Scholar 

  28. Fenz, J. et al.: 380 kV overhead transmission line over the Bosphorus. Siemens Power Engineering 6 (1984), pp. 208 to 212. Siemens A19100-E433-A871-X-7600

    Google Scholar 

  29. ASTM B416: Concentric-lay-stranded aluminium-clad steel conductors. New York, ASTM, 1998

    Google Scholar 

  30. EN 50 326: Conductors for overhead lines Characteristics of greases. Brussels, CENELEC, 2001

    Google Scholar 

  31. Cigré SC22 WG22–04: A practical method of conductor creep determination. Electra 24 (1974), pp. 105 to 137

    Google Scholar 

  32. Kießling, F.; Nefzger, P.: Zur Wahl der Zugspannung für die Leiter einer Hochspannungsfreileitung (Selection of tensile stress for overhead power line conductors). Elektrizitätswirtschaft 80 (1981), pp. 648 to 691

    Google Scholar 

  33. ASTM B232: Aluminium conductors, concentric-lay-stranded conductors, coated steel reinforced (ACSR). New York, ASTM, 1995

    Google Scholar 

  34. Papailiou, K. O.: Die Seilbiegung mit einer durch die innere Reibung, die Zugkraft und die Seilkrümmung veränderlichen Biegesteifigkeit (Conductor bending considering the variable bending stiffness depending on the internal friction, the tensile force and the conductor curvature). Doctorate thesis, ETH Zürich No. 11057, 1995

    Google Scholar 

  35. Winkler, D.: Oberflächenveränderungen beim Transport von Aluminiumseilen in Containern (Changing of surface quality at transport of aluminium conductors in containers). Elektrizitätswirtschaft 100 (2001) 5, pp. 52 to 55

    Google Scholar 

  36. EN 61 395: Overhead electrical conductors – Creep test procedure for stranded conductors (IEC 61 395). Brussels, CENELEC, 1998

    Google Scholar 

  37. Markt, G.; Mengele, B.: Elektrische Leitung mit Bündelleitern (Overhead electrical lines with bundle conductors). Austrian patent 121 704 (1930)

    Google Scholar 

  38. Timascheff, A.: Ursprung und Entwicklung der Bündelleiter (Origin and development of bundle conductors). Elektrotechnik und Maschinenbau 93 (1976), pp. 213 to 218

    Google Scholar 

  39. EPRI: Transmission line reference book: Transmission lines with 345 kV and above. Palo Alto, Electric Power Research Institute, 1978

    Google Scholar 

  40. TEPCO: 1000 kV transmission lines. Tokyo, Tokyo Electric Power Company 1996

    Google Scholar 

  41. Yamagishi, H.; Murooka, M.; Urushibara, H.: Mechanical test results of full scale 1000 kV transmission towers. Cigré Report 22–301, 1990

    Google Scholar 

  42. Rowbottom, M. D.; Aldham-Huges, R. R.: Subspan oscillations: A review of the existing knowledge. Cigré Report 22–09, 1972

    Google Scholar 

  43. Regis, O. et al.: Expanded bundle technique: The application of HSIL concept to increase the capacity of overhead lines. Cigré Report 22–207, 1998

    Google Scholar 

  44. IEC 62 219: Formed wire concentric-lay overhead electrical stranded conductors. Geneva, IEC, 2000

    Google Scholar 

  45. Ervik, M. et al.: Erection of and vibration protection on long fjord crossings in Norway. Cigré Report 23–03, 1968

    Google Scholar 

  46. Riez, M.: Crossing of the Schelde by an overhead 380 kV line. Brussels, Tractionel, 1975

    Google Scholar 

  47. McCulloch, A. R.; Pue-Gilchrist, A. C.; Kirkpatrick, L. A.: Ten years of progress with self-damping conductors. IEEE Trans. on Power Apparatus and Systems Vol. PAS-99, No. 3 (1980), pp. 998 ff

    Article  Google Scholar 

  48. Maass, H.: Beobachtungen über das Auftreten und Versuche zur Bekämpfung der mechanischen Freileitungsschwingungen (Observation on occurrence and tests on control of mechanical vibrations on overhead line conductors). Elektrotechnik und Maschinenbau 52 (1934) 13

    Google Scholar 

  49. Douglass, D. A.; Roche, J. B.: T2 wind motion resistant conductor. IEEE Transaction on Power Apparatus and Systems, Vol. 103, No. 10 (1985), pp. 2879

    Google Scholar 

  50. Hesterlee, J. M. et al.: Bare overhead transmission and distribution conductors. Carrolton, Southwire, www.southwire.com, 2000

    Google Scholar 

  51. Tsujimoto, K. et al.: Development of an ACSR conductor with extremely suppressed aeolian noise and audible noise level. Hitachi Cable Review (1988), pp. 33 ff

    Google Scholar 

  52. Lugschitz, H.; Egger, H.: Experience with a 380 kV camouflage line. Cigré Report 22/33/36–04, 1998

    Google Scholar 

  53. EN 50 341–1: Overhead electrical lines exceeding AC 45 kV. Part 1: General requirements – Common specifications. Brussels, CENELEC, 2001

    Google Scholar 

  54. Nolasco, J. F.: Design and construction features of the first 500 kV transmission line with guyed towers in Brazil. Sienna, Cigré SC 22 Symposium, 1979

    Google Scholar 

  55. Cigré SC22 WG22–12: The thermal behaviour of overhead conductors. Section 1 and 2: Mathematical model for evaluation of conductor temperature in the steady state and the application thereof. Electra 144 (1992), pp. 107 to 125

    Google Scholar 

  56. Cigré SC22 WG22–12: The thermal behaviour of overhead conductors. Section 3: Mathematical model for evaluation of conductor temperature in the unsteady state. Electra 174 (1997), 59 to 69

    Google Scholar 

  57. IEC 61 597: Overhead line electrical conductors – Calculation methods for stranded bare conductors. Geneva, IEC, 1995

    Google Scholar 

  58. Webs, A.: Dauerstrombelastbarkeit von nach DIN 48 201 gefertigten Freileitungsseilen aus Kupfer, Aluminium und Aldrey (Current carrying capacity of overhead line conductors made of copper, aluminium and aluminium alloy according to DIN 48 201). Elektrizitätswirtschaft 61 (1962), pp. 861 to 872

    Google Scholar 

  59. Palic, M.; Plehn, M.: Temperaturmessungen an Freileitungsseilen bei wechselnder Strombelastung (Temperature measurements at overhead line conductors during varying current load). Elektrizitätswirtschaft 89 (1990), pp. 493 to 497

    Google Scholar 

  60. Aluminium electrical conductor handbook. Washington. The Aluminium Association, 1982

    Google Scholar 

  61. Current temperature characteristics of aluminium conductors. Pittsburgh, Alcoa Conductor Products Company, 1965

    Google Scholar 

  62. Cigré SC22 WG22–12: Probabilistic determination of conductor current ratings. Electra 164 (1996), pp. 103 to 117

    Google Scholar 

  63. Overload and fault current limitations of bare aluminium conductors. Pittsburgh, Alcoa Conductor Products Company, 1965

    Google Scholar 

  64. Schneider; Schnaus: Elektrische Energiewirtschaft (Electric power economics). Berlin, Springer-Verlag, 1936

    Google Scholar 

  65. Kießling, F. et al.: Contact lines for electrical railways. Munich and Erlangen, Publicis Cooperate Publishing, 2001

    Google Scholar 

  66. Cigré SC 22 WG22–12: Real-time monitoring. Electra 197 (2001), pp. 35 to 37

    Google Scholar 

  67. Cebolka, W. J. et al.: PG and E’s ATLAS (Ambient temperature line ampacity system). Transmission line dynamic thermal rating system. Cigré Report 22–102, 1992

    Google Scholar 

  68. Seppa, T. O. et al.: Application of real-time thermal ratings for optimizing transmission line investment and operating decisions. Cigré Report 22–301, 2000

    Google Scholar 

  69. Douglass, D. A. et al.: IEEE’s approach for increasing transmission line ratings in North America. Cigré Report 22–302, 2000

    Google Scholar 

  70. CIGRE SC22 WG22–12: Description of state of the art of methods to determine thermal rating of lines in real-time and their application in optimizing power flow. Cigré Report 22–304, 2000

    Google Scholar 

  71. Vognild, L. H.; Fikke, S. M: Utilizing meteorological data for peak load reference temperature and ambient temperature for conductor ratings in system planning and operation. Cigré Report 22–103, 1992

    Google Scholar 

  72. Ann, W; Kießling, F.; Schnakenberg, D.: Die Leiter der 380-kV-Elbekreuzung der Nordwestdeutsche Kraftwerke AG und ihre Verlegung (The conductors of 380 kV river Elbe crossing of Nordwestdeutsche Kraftwerke AG and their stringing). Elektrizitätswirtschaft 78 (1979), pp. 245 to 256

    Google Scholar 

  73. Kießling, Ruhnau, J.: Ice loads on overhead power lines in Germany and their impact on reliability and design. Budapest, IWAIS Conference 1993

    Google Scholar 

  74. Möcks, L.: Everyday stress und die mechanische Sicherheit der Freileitungsseile (Everyday stress and mechanical reliability of overhead line conductors). Elektrizitätswirtschaft 64 (1965), pp. 67 to 75

    Google Scholar 

  75. Cigré SC22 WG22–04: Recommendations for the evaluation of the lifetime of overhead line conductors. Electra 63 (1979), pp. 103 to 145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiessling, F., Nefzger, P., Nolasco, J.F., Kaintzyk, U. (2003). Selection of conductors. In: Overhead Power Lines. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97879-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97879-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05556-0

  • Online ISBN: 978-3-642-97879-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics