Advertisement

Introduction

  • Helmut Duddeck
  • Wolfgang Dietrich

Abstract

Since the early 1980s modern NMR spectroscopy — especially the two-dimensional methodology — has become an extraordinarily useful tool in the structural elucidation of unknown organic compounds. Nowadays, the latest generation spectrometers with their increasingly powerful pulse programmers, computers, and data storage devices, enable the user to perform routinely many multipulse experiments with a time expenditure no longer significantly exceeding that of most traditional techniques, as for instance, multiple selective decoupling. On the other hand, much more information can be extracted from multipulse than from conventional measurements.

Keywords

Nuclear Magnetic Resonance Data Storage Device Heteronuclear Chemical Shift Heteronuclear Chemical Shift Correlation Complete Signal Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aue WP, Bartholdi E, Ernst RR (1976) Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys 64: 2229.CrossRefGoogle Scholar
  2. Bax A (1984) Two-dimensional NMR spectroscopy. Top Carbon-13 NMR Spectrosc 4: 197.Google Scholar
  3. Benn R, Günther H (1983) Moderne Pulsfolgen in der hochauflösenden NMR-Spektroskopie. Angew Chem 95: 381;CrossRefGoogle Scholar
  4. Benn R, Günther H (1983) Moderne Pulsfolgen in der hochauflösenden NMR-Spektroskopie. Angew Chem Int Ed Engl 22: 350.CrossRefGoogle Scholar
  5. Buddrus J, Bauer H (1987) Bestimmung des Kohlenstoffgerüsts organischer Verbindungen durch Doppelquanten kohärenz-13C-NMR-Spektroskopie, die INADEQUATE-Pulsfolge. Angew Chem 99: 642;CrossRefGoogle Scholar
  6. Buddrus J, Bauer H (1987) Bestimmung des Kohlenstoffgerüsts organischer Verbindungen durch Doppelquanten kohärenz-13C-NMR-Spektroskopie, die INADEQUATE-Pulsfolge. Angew Chem Int Ed Engl 26: 625.CrossRefGoogle Scholar
  7. Chesick JP (1989) Fourier analysis and structure determination. Part I: Fourier transforms. J Chem Educ 66: 128.CrossRefGoogle Scholar
  8. Chesick JP (1989) Fourier analysis and structure determination. Part II: Pulse NMR and NMR imaging. J Chem Educ 66: 283.CrossRefGoogle Scholar
  9. Derome AE (1989) The use of N.M.R. spectroscopy in the structure determination of natural products: two-dimensional methods. Nat Prod Rep 6: 111.CrossRefGoogle Scholar
  10. Eggenberger U, Bodenhausen G (1990) Moderne NMR-Pulsexperimente: eine graphische Beschreibung der Entwicklung von Spinsystemen. Angew Chem 102: 392;CrossRefGoogle Scholar
  11. Eggenberger U, Bodenhausen G (1990) Moderne NMR-Pulsexperimente: eine graphische Beschreibung der Entwicklung von Spinsystemen. Angew Chem Int Ed Engl 29: 374.CrossRefGoogle Scholar
  12. Farrar TC (1987) Selective sensitivity enhancement in FT-NMR. Anal Chem 59: 679 A.CrossRefGoogle Scholar
  13. Freeman R, Morris GA (1979) Two-dimensional Fourier transform in NMR. Bull Magn Resort 1: 5.Google Scholar
  14. Kessler H, Gehrke M, Griesinger C (1988) Zweidimensionale NMR-Spektroskopie, Grundlagen und Übersicht über die Experimente. Angew Chem 100: 507;CrossRefGoogle Scholar
  15. Kessler H, Gehrke M, Griesinger C (1988) Zweidimensionale NMR-Spektroskopie, Grundlagen und Übersicht über die Experimente. Angew Chem Int Ed Engl 27: 490.CrossRefGoogle Scholar
  16. King RW, Williams KR (1989) The Fourier transform in chemistry. Part 1. Nuclear magnetic resonance: Introduction. J Chem Educ 66: A213.CrossRefGoogle Scholar
  17. King RW, Williams KR (1989) The Fourier transform in chemistry. Part 2. Nuclear magnetic resonance: The Single Pulse Experiment. J Chem Educ 66: A243.CrossRefGoogle Scholar
  18. Williams KR, King RW (1990) The Fourier transform in chemistry. Part 3: Multiple-pulse experiments. J Chem Educ 67: A93.CrossRefGoogle Scholar
  19. Williams KR, King RW (1990) The Fourier transform in chemistry. Part 4. Two-dimensional methods. J Chem Educ 67: A125.CrossRefGoogle Scholar
  20. King RW, Williams KR (1990) The Fourier transform in chemistry — NMR. A glossary of NMR terms. J Chem Educ 67: A100.CrossRefGoogle Scholar
  21. Martin GE, Zektzer AS (1988) Long-range two-dimensional heteronuclear chemical shift correlation. Magn Reson Chem 26: 631.CrossRefGoogle Scholar
  22. Morris GA (1984) Pulsed methods for polarization transfer in 13C NMR. Top Carbon-13 NMR Spectrosc 4: 179.Google Scholar
  23. Morris GA (1986) Modern NMR-techniques for structure elucidation. Magn Reson Chem 24: 371.CrossRefGoogle Scholar
  24. Rabenstein DL, Wei Guo (1988) Nuclear magnetic resonance. Anal Chem 60: 1R (Review of reviews).CrossRefGoogle Scholar
  25. Sadler IH (1988) The use of N.M.R. spectroscopy in the structure determination of natural products: one-dimensional methods. Nat. Prod. Rep. 5: 101.CrossRefGoogle Scholar
  26. Turner CJ (1984) Multipulse NMR in liquids. Progr NMR Spectrosc 16: 311.CrossRefGoogle Scholar
  27. Wasson JR (1986) Nuclear magnetic resonance spectrometry. Anal Chem 58: 315R (Review of reviews).CrossRefGoogle Scholar
  28. Willem R (1987) 2D NMR applied to dynamic stereochemical problems. Progr NMR Spectrosc 20: 1.CrossRefGoogle Scholar
  29. Wüthrich K (1989) The development of nuclear magnetic resonance spectroscopy as a technique for protein structure deter-mination. Acc Chem Res 22: 36.CrossRefGoogle Scholar

Monographs

  1. Abraham RJ, Fisher J (1988) NMR spectroscopy. Wiley, Chichester.Google Scholar
  2. Atta-ur-Rahman (1986) Nuclear Magnetic Resonance — Basic Principles. Springer, New York.Google Scholar
  3. Atta-ur-Rahman (1989) One- and two-dimensional NMR spectroscopy. Elsevier, Amsterdam.Google Scholar
  4. Bax A (1982) Two-Dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, Reidel, Dordrecht.Google Scholar
  5. Bovey FA (1988) Nuclear magnetic resonance spectroscopy, 2nd ed. Academic Press, San Diego.Google Scholar
  6. Breitmaier E (1990) Vom NMR-Spektrum zur Strukturformel organischer Verbindungen. Teubner, Stuttgart.Google Scholar
  7. Brey WS (1988), Pulse methods in ID and 2D liquid-phase NMR. Academic Press, San Diego.Google Scholar
  8. Chandrakumar N, Subramanian S (1987) Modern Techniques in High-Resolution FT-NMR. Springer, New York.CrossRefGoogle Scholar
  9. Croasmun WR, Carlson RMK (1987) Two-Dimensional NMR-Spectroscopy, Applications for Chemists and Biochemists. VCH Publishers, New York.Google Scholar
  10. Derome AE (1987) Modern NMR-Techniques for Chemistry Research. Pergamon Press, Oxford.Google Scholar
  11. Ernst RR, Bodenhausen G, Wokaun A (1986; 2nd ed. 1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford.Google Scholar
  12. Freeman R (1988) A handbook of nuclear magnetic resonance. Longman Scientific & Technical, Harlow, UK.Google Scholar
  13. Friebolin H (1988) Ein- und zweidimensionale NMR-Spektroskopie — eine Einführung. VCH, Weinheim.Google Scholar
  14. Friebolin H (1991) Basic one- and two-dimensional NMR-spectroscopy. VCH, Weinheim.Google Scholar
  15. Goldman M (1988) Quantum description of high-resolution NMR in liquids. Clarendon Press, Oxford.Google Scholar
  16. Günther H (1992) NMR-Spektroskopie, 3rd ed. Thieme, Stuttgart, New York.Google Scholar
  17. Günther H (1973) NMR Spectroscopy — An Introduction. Wiley, Chichester.Google Scholar
  18. Harris RK (1983) Nuclear Magnetic Resonance Spectroscopy — A Physicochemical View. Pitman, London.Google Scholar
  19. Homans SW (1989) A dictionary of concepts in NMR. Clarendon Press, Oxford.Google Scholar
  20. Kalinowski H-O, Berger S, Braun S (1984) 13C-NMR-Spektroskopie. Thieme, Stuttgart, New York.Google Scholar
  21. Kalinowski H-O, Berger S, Braun S (1988) Carbon-13 NMR Spectroscopy. Wiley, Chichester.Google Scholar
  22. Lambert JB, Rittner R (1987) Recent Advances in Oganic NMR-Spectroscopy. Norell Press, Landisville.Google Scholar
  23. Martin GE, Zektzer AS (1988) Two-Dimensional NMR-Methods for Establishing Molecular Connectivity. VCH, Weinheim.Google Scholar
  24. Munowitz M (1988) Coherence and NMR. Wiley, Chichester.Google Scholar
  25. Nakanishi K (Ed. 1990) One-dimensional and two-dimensional NMR spectra by modern pulse techniques. Kodansha, Tokyo.Google Scholar
  26. Neuhaus D, Williamson M (1989) The nuclear Overhauser effect in structural and conformational analysis. VCH, New York, Weinheim, Cambridge.Google Scholar
  27. Paudler WW (1987) Nuclear magnetic resonance, general concepts and applications. Wiley, Chichester.Google Scholar
  28. Richards SA (1988) Laboratory Guide to Proton NMR Spectroscopy. Blackwell Scientific Publications, Oxford.Google Scholar
  29. Sanders JKM, Hunter BK (1987) Modern NMR-Spectroscopy, A Guide for Chemists. Oxford University Press, Oxford.Google Scholar
  30. Sanders JKM, Constable EC, Hunter BK (1989) Modern NMR-Spectroscopy, A Workbook of Chemical Problems. Oxford University Press, Oxford.Google Scholar
  31. Sternhell S, Field LD (1989) Analytical NMR, Wiley, Chichester.Google Scholar
  32. Wehrli FW, Marchand AP, Wehrli S (1988) Interpretation of carbon-13 NMR spectra, 2nd ed. Wiley, Chichester.Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1992

Authors and Affiliations

  • Helmut Duddeck
    • 1
  • Wolfgang Dietrich
    • 1
  1. 1.Fakultät für ChemieRuhr-Universität BochumBochumGermany

Personalised recommendations