Advertisement

Combustion pp 245-256 | Cite as

References

  • Jürgen Warnatz
  • Ulrich Maas
  • Robert W. Dibble
Chapter
  • 262 Downloads

Keywords

Burning Velocity Diffusion Flame Turbulent Combustion Turbulent Flame Combustion Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Gayed RG, Bradley D, Hamid NM, Lawes M (1984) Lewis number effects on turbulent burning velocity. 20th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 505Google Scholar
  2. Ackermann J, Wulkow M (1990) MACRON — A Program Package for Macromolecular Kinetics. Konrad-Zuse-Zentrum Berlin, Preprint SC-90–14Google Scholar
  3. Alkemade V, Homann KH (1989) Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide. Z Phys Chem NF 161:19CrossRefGoogle Scholar
  4. Amsden AA, O’Rourke PJ, Butler TD (1989) KIVAII: A computer program for chemically reactive flows with sprays. LA-11560-MS, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  5. Aris R (1962) Vectors, tensors, and the basic equations of fluid mechanics. Prentice Hall, New YorkzbMATHGoogle Scholar
  6. Arnold A, Becker H, Hemberger R, Hentschel W, Ketterle W, Köllner M, Meienburg W, Monkhouse P, Neckel H, Schäfer M, Schindler KP, Sick V, Suntz R, Wolfram J (1990a) Laser in situ monitoring of combustion processes. Appi Optics 29:4860ADSCrossRefGoogle Scholar
  7. Arnold A, Hemberger R, Herden R, Ketterle W, Wolfram J (1990b) Laser stimulation and observation of ignition processes in CH3OH-O2-mixtures. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1783Google Scholar
  8. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226Google Scholar
  9. Ashurst WT (1995) Modeling turbulent flame propagation. 25th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1075Google Scholar
  10. Atkins PW (1990) Physical chemistry, 4th ed. Freeman, New YorkGoogle Scholar
  11. Bäuerle B, Hoffmann F, Behrendt F, Warnatz J (1995) Detection of Hot Spots in the End Gas of an IC Engine Using Two-Dimensional LIF of Formaldehyde. 25th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 135Google Scholar
  12. Bamford CH, Tipper CFH (eds) (1977) Comprehensive Chemical Kinetics, Vol 17: Gas Phase Combustion. Elsevier, Amsterdam/Oxford/New YorkGoogle Scholar
  13. Bar M, Nettesheim S, Totermund HH, Eiswirth M, Erti G (1995) Transition between fronts and spiral waves in a bistable surface reaction. Phys Rev Lett 74:1246ADSCrossRefGoogle Scholar
  14. Bartok W, Engleman VS, Goldstein R, del Valle EG (1972) Basic kinetic studies and modeling of nitrogen oxide formation in combustion processes. AIChE Symp Ser 68(126):30Google Scholar
  15. Baulch DL, Cox AM, Just T, Kerr JA, Pilling M, Troe J, Walker RW, Warnatz J (1991) Compilation of rate data on C1/C2 Species Oxidation. J Phys Chem Ref Data 21:3Google Scholar
  16. Becker H, Monkhouse PB, Wolfram J, Cant RS, Bray KNC, Maly R, Pfister W, Stahl G, Warnatz J (1991) Investigation of extinction in unsteady flames in turbulent combustion by 2D-LIF of OH radicals and flamelet analysis. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 817Google Scholar
  17. Behrendt F, Deutschmann O, Maas U, Warnatz J (1995) Simulation and sensitivity analysis of the heterogeneous oxidation of methane on a platinum foil. J Vac Sci Technol A13:1373ADSGoogle Scholar
  18. Bergner P, Eberius H, Just T, Pokomy H (1983) Untersuchung zur Kohlenwasserstoff-Emission eingeschlossener Flammen im Hinblick auf die motorische Verbrennung. VDI-Berichte 498:233Google Scholar
  19. Bilger RW (1976) The structure of diffusion flames. Comb Sci Technol 13:155CrossRefGoogle Scholar
  20. Bilger RW (1980) Turbulent flows with nonpremixed reactants. In: Libby PA, Williams FA (eds) Turbulent reactive flows. Springer, New YorkGoogle Scholar
  21. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. J. Wiley & Sons, New YorkGoogle Scholar
  22. Bish ES, and Dahm WJA (1995) Strained dissipation and reaction layer analysis of nonequilibrium chemistry in turbulent reacting flows. Comb Flame 100:457CrossRefGoogle Scholar
  23. Bockhorn H (1994) Soot formation in combustion. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  24. Bockhorn H, Fetting F, Wenz HW (1983) Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames Ber Bunsenges Phys Chem 87:1067Google Scholar
  25. Bockhorn H, Chevalier C, Warnatz J, Weyrauch V (1990) Bildung von promptem NO in Kohlenwasserstoff-Luft-Flammen. 6. TECFLAM-Seminar, TECFLAM, DLR StuttgartGoogle Scholar
  26. Bockhorn H, Chevalier C, Warnatz J, Weyrauch V (1991) Experimental Investigation and modeling of prompt NO formation in hydrocarbon flames. In: Santoro RJ, Felske JD (eds) HTD-Vol 166, Heat transfer in fire and combustion systems, Book No G00629–1991Google Scholar
  27. Boddington T, Gray P, Kordylewski W, Scott SK (1983) Thermal explosions with extensive reactant consumption: A new criterion for criticality. Proc R Soc London, Ser A, 390 (1798):13ADSCrossRefGoogle Scholar
  28. Bodenstein M, Lind SC (1906) Geschwindigkeit der Bildung des Bromwasserstoffs aus seinen Elementen. Z Phys Chem 57:168Google Scholar
  29. Bond GC (1990) Heterogeneous catalysis: Principles and applications, 2nd ed. Oxford Press, OxfordGoogle Scholar
  30. Borghi R (1984) In: Bruno C, Casci C (eds) Recent advances in aeronautical science. Pergamon, LondonGoogle Scholar
  31. Boudart M, Djega-Mariadassouo G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, PrincetonGoogle Scholar
  32. Bowman CT (1993) Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation. 24th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 859Google Scholar
  33. Bradley D (1993) How fast can we burn? 24th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 247Google Scholar
  34. Braun M (1988) Differentialgleichungen und ihre Anwendungen. Springer, Berlin/Heidelberg/New York/London/Paris/Tokyo, p 521Google Scholar
  35. Bray KNC (1980) Turbulent flows with premixed reactants. In: Libby PA, Williams FA (eds) Turbulent reacting flows. Springer, New YorkGoogle Scholar
  36. Bray KNC, Libby PA (1976) Interaction effects in turbulent premixed flames. Phys Fluids 19:1687ADSzbMATHCrossRefGoogle Scholar
  37. Bray KNC, Moss JB (1977) Acta Astron 4:291 Brown GM, Kent JC (1985) In: Yang WC (ed) Flow Visualization III. Hemisphere, London, p 118Google Scholar
  38. Buch KA, Dahm WJA (1995a) Fine scale structure of conserved scalar mixing in turbulent flows Part I: So 1. J Fluid Mech, accepted for publicationGoogle Scholar
  39. Buch KA, Dahm WJA (1995b) Fine scale structure of conserved scalar mixing in turbulent flows Part II: Sc ≈ 1, J Fluid Mech, in reviewGoogle Scholar
  40. Buch KA, Dahm WJA (1995c) Fine scale structure of conserved scalar mixing in turbulent flows Part III: Equilibrium structure of reacting flows. J Fluid Mech, in reviewGoogle Scholar
  41. Burcat A (1984) In: Gardiner WC (ed) Combustion chemistry. Springer, New YorkGoogle Scholar
  42. Burke SP, Schumann TEW (1928) Ind Eng Chem 20:998CrossRefGoogle Scholar
  43. Candel S, Veynante D, Lacas F, Darabiha N (1994) Current progress and future trends in turbulent combustion. Combust Sci Technol 98:245CrossRefGoogle Scholar
  44. Chen JY, Kollmann W, Dibble RW (1989) PDF modeling of turbulent nonpremixed methane jet flames. Comb Sci Technol 64:315CrossRefGoogle Scholar
  45. Chevalier C, Louessard P, Müller UC, Warnatz J (1990a) A detailed low-temperature reaction mechanism of n-heptane auto-ignition. Proc. 2nd Int. Symp. on diagnostics and modeling of combustion in reciprocating Engines. The Japanese Society of Mechanical Engineers, Tokyo, p 93Google Scholar
  46. Chevalier C, Warnatz J, Melenk H (1990b) Automatic generation of reaction mechanisms for description of oxidation of higher hydrocarbons. Ber Bunsenges Phys Chem 94:1362Google Scholar
  47. Cho SY, Yetter RA, Dryer FL (1992) A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction. J Comp Phys 102:160ADSzbMATHCrossRefGoogle Scholar
  48. Christmann K (1991) Introduction to surface physical chemistry. Springer, Berlin/HeidelbergGoogle Scholar
  49. Chue RS, Lee JHS, Scarinci T, Papyrin A, Knystautas R (1993) Transition from fast deflagration to detonation under the influence of wall obstacles. In: Dynamic aspects of detonation and explosion phenomena (Kuhl AL, Leyer JC, Borisov AA, Sirignano WA eds) Progress in Astronautics and Aeronautics 153:270Google Scholar
  50. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New YorkGoogle Scholar
  51. Coltrin ME, Kee RJ, Rupley FM (1993) Surface Chemkin: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface, Intl J Chem Kin 23:1111CrossRefGoogle Scholar
  52. Correa SM (1992) A review of NOx formation under gas-turbine combustion conditions. Comb Sci Technol 87:329CrossRefGoogle Scholar
  53. Curtiss CF, Hirschfelder JO (1959) Transport properties of multicomponent gas mixtures. J Chem Phys 17:550MathSciNetADSCrossRefGoogle Scholar
  54. Dahm WJA, Bish ES (1993) High resolution measurements of molecular transport and reaction processes in turbulent combustion, in: Turbulence and molecular processes in combustion (Takeno T ed), p 287. Elsevier, New YorkGoogle Scholar
  55. Dahm WJA, Tryggvason G, Zhuang MM (1995) Integral method solution of time-dependent strained diffusion-reaction equations with multi-step kinetics, to appear in SIAM Journal of Applied MathematicsGoogle Scholar
  56. Damköhler G (1940) Z Elektrochem 46:601Google Scholar
  57. Dean AM, Hanson RK, Bowman CT (1990) High temperature shock tube study of reactions of CH and C-atoms with N2.23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 259Google Scholar
  58. Deuflhard P, Wulkow M (1989) Impact of Computing in Science and Engineering 1:269zbMATHCrossRefGoogle Scholar
  59. Deutschmann O, Behrendt F, Warnatz J (1994) Modelling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil. Catalysis Today 21:461CrossRefGoogle Scholar
  60. Dibble RW, Masri AR, Bilger RW (1987) The spontaneous Raman scattering technique applied to non-premixed flames of methane. Comb Flame 67:189CrossRefGoogle Scholar
  61. Dimotakis PE, Miller PL (1990) Some consequences of the boundedness of scalar fluctuations. Phys Fluids A2:1919ADSGoogle Scholar
  62. Dinkelacker F, Buschmann A, Schäfer M, Wolfram J (1993) Spatially resolved joint measurements of OH- and temperature fields in a large premixed turbulent flame. Proceedings of the Joint Meeting of the British and German Sections of the Combustion Institute, Queens College, Cambridge, p 295Google Scholar
  63. Dixon-Lewis G, Fukutani S, Miller JA, Peters N, Warnatz J et al. (1985) Calculation of the structure and extinction limit of a methane-air counterflow diffusion flame in the forward stagnation region of a porous cylinder. 20th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1893Google Scholar
  64. Dopazo C, O’Brien EE (1974) An approach to the description of a turbulent mixture. Acta Astron 1:1239zbMATHCrossRefGoogle Scholar
  65. Dreier T, Lange B, Wolfram J, Zahn M, Behrendt F, Warnatz J (1987) CARS measurements and computations of the structure of laminar stagnation-point methane-air counterflow diffusion flames. 21st Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1729Google Scholar
  66. Du DX, Axelbaum RL, Law CK (1989) Experiments on the sooting limits of aerodynamically-strained diffusion flames. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 387Google Scholar
  67. Eberius H, Just T, Kelm S, Warnatz J, Nowak U (1987) Konversion von brennstoffgebundenem Stickstoff am Beispiel von dotierten Propan-Luft-Flammen. VDI-Berichte 645:626Google Scholar
  68. Eckbreth AC (1988) Laser diagnostics for combustion temperature and species, in: Energy and engineering sciences Vol 6 (Gupta AK and Lilley DG eds)Google Scholar
  69. Edwards DH (1969) A survey of recent work on the structure of detonation waves, 12th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 819Google Scholar
  70. El-Gamal M (1995) Simulation der Rußbildung in vorgemischten Verbrennungssystemen. Dissertation, Universität StuttgartGoogle Scholar
  71. El-Gamal M, Warnatz J (1995) Soot formation in combustion processes, in: Der Arbeitsprozess des Verbrennungsmotors, Technische Universität Graz, in pressGoogle Scholar
  72. Esser C (1990) Simulation der Zündung und Verbrennung höherer Kohlenwasserstoffe. Dissertation, Universität HeidelbergGoogle Scholar
  73. Esser C, Maas U, Warnatz J (1985) Chemistry of the combustion of higher hydrocarbons and its relation to engine knock. Proc. 1st Int. Symp. on diagnostics and modeling of combustion in reciprocating Engines. The Japanese Society of Mechanical Engineers, Tokyo, p 335Google Scholar
  74. Faeth GM (1984) Evaporation and combustion of sprays. Prog Energy Combust Sci 9:1CrossRefGoogle Scholar
  75. Fenimore CP (1979) Studies of fuel-nitrogen in rich flame gases. 17th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 661Google Scholar
  76. Forsythe GE, Wasow WR (1969) Finite-difference methods for partial differential equations. Wiley, New YorkGoogle Scholar
  77. Frank-Kamenetskii DA (1955) Diffusion and heat exchange in chemical kinetics. Princeton University Press, PrincetonGoogle Scholar
  78. Frenklach M (1985) Chem. Eng. Sci. 40:1843CrossRefGoogle Scholar
  79. Frenklach M, Clary D (1983) Ind Eng Chem Fundam 22:433CrossRefGoogle Scholar
  80. Frenklach M, Warnatz J (1987) Detailed modeling of PAH profiles in a sooting low pressure acetylen flame. Comb Sci Technol 51:265CrossRefGoogle Scholar
  81. Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1559Google Scholar
  82. Frenklach M, Ramachandra MK, Manila MA (1984) 20th Symp (Intl) Comb, p 871. The Combustion Institute, PittsburghGoogle Scholar
  83. Frenklach M, Clary DW, Gardiner jr WC, Stein SE (1985) 20th Symp (Intl) Comb, p 887. The Combustion Institute, PittsburghGoogle Scholar
  84. Frenklach M, Clary DW, Yuan T, Gardiner jr WC, Stein SE (1986) Combust. Sci. Tech. 50:79CrossRefGoogle Scholar
  85. Fric TF (1993) Effects of fuel-air unpremixedness on NOx emissions. J Propulsion Power 9:708CrossRefGoogle Scholar
  86. Fristrom RM, Westenberg AA (1965) Flame structure. McGraw-Hill, New YorkGoogle Scholar
  87. Gay don A, Wolfhard H (1979) Flames, their structure, radiation, and temperature. Chapman and Hall, LondonGoogle Scholar
  88. Gehring M, Hoyermann K, Schacke H, Wolfram J (1973) Direct studies of some elementary steps for the formation and destruction of nitric oxide in the H-N-O system. 14th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 99Google Scholar
  89. Gill A, Warnatz J, Gutheil E (1994) Numerical investigation of the turbulent combustion in a direct-injection stratified-charge engine with emphasis on pollutant formation. Proc. COMODIA (1994), p 583. JSME, YokohamaGoogle Scholar
  90. Glarborg P, Miller JA, Kee RJ (1986) Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Comb Flame 65:177CrossRefGoogle Scholar
  91. Görner K (1991) Technische Verbrennungssysteme. Springer Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  92. Golden DM (1994) Gas phase homogeneous kinetics, in: Low-temperature chemistry of the atmosphere (Moortgat GK ed.), pp 69–92, Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  93. Gordon S, McBride BJ (1971) Computer program for calculation of complex chemical eqilibrium compositions, rocket performance, incident and reflected shocks and Chapman-Jouguet detonations. NASA SP-273Google Scholar
  94. Goyal G, Warnatz J, Maas U (1990a) Numerical studies of hot spot ignition in H2-O2 and CH4-air mixtures. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1767Google Scholar
  95. Goyal G, Maas U, Warnatz J (1990b) Simulation of the transition from deflagration to detonation. SAE 1990 Transactions, Journal of Fuels & Lubricants, Section 4, Vol 99, Society of Automotive Engineers, Inc., Warrendale, PA, p 1CrossRefGoogle Scholar
  96. Günther R (1987), 50 Jahre Wissenschaft und Technik der Verbrennung, BWK 39 Nr 9Google Scholar
  97. Gutheil E, Bockhorn H (1987) The effect of multi-dimensional PDFs in turbulent reactive flows at moderate Damköhler number. Physicochemieal Hydrodynamics 9:525Google Scholar
  98. Hall RJ, Eckbreth AC (1984) In: Erf RK (ed) Laser applications Vol V. Academic Press, New YorkGoogle Scholar
  99. Hanson RK, Seitzman JM, Paul P (1990) Planar laser-fluorescence imaging of combustion gases. Appi Phys B50:441ADSCrossRefGoogle Scholar
  100. He LT, Lee JHS (1995) The dynamical limit of one-dimensional detonations. Phys Fluids 7:1151ADSzbMATHCrossRefGoogle Scholar
  101. Heard DE, Jeffries JB, Smith GP, Crosley DR (1992) LIF measurements in methane/air flames of radicals important in prompt-NO formation. Comb Flame 88:137CrossRefGoogle Scholar
  102. Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New YorkGoogle Scholar
  103. Hinze J (1972) Turbulence, 2nd ed. McGraw-Hill, New YorkGoogle Scholar
  104. Hirschfelder JO (1963) Some remarks on the theory of flame propagation. 9th Symp (Int) Comb, Academic Press, New York, p 553Google Scholar
  105. Hirschfelder JO, Curtiss CF (1949) Theory of propagation of flames. Part I: General equations. 3rd Symp. Comb, Flame and Explosion Phenomena, Williams and Wilkins, Baltimore, p 121Google Scholar
  106. Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  107. Hobbs ML, Radulovic PT, Smoot LD (1993) Combustion and gasification of coals in fixed-beds. Progr Energy Comb Sci 19:505CrossRefGoogle Scholar
  108. Homann KH (1975) Reaktionskinetik. Steinkopff, DarmstadtCrossRefGoogle Scholar
  109. Homann KH (1984) Formation of large molecules, particulates, and ions in premixed hydrocarbon flames; progress and unresolved questions. 20th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 857Google Scholar
  110. Homann K, Solomon WC, Warnatz J, Wagner HG, Zetsch C (1970) Eine Methode zur Erzeugung von Fluoratomen in inerter Atmosphäre. Ber Bunsenges Phys Chem 74:585Google Scholar
  111. Hottel HC, Hawthorne WR (1949) Diffusion in laminar flame jets. 3rd Symp (Intl) Comb, Williams and Wilkins, Baltimore, p 254Google Scholar
  112. Hsu DSY, Hoffbauer MA, Lin MC (1987) Surface Sci. 184:25ADSCrossRefGoogle Scholar
  113. Hurst BE (1984) Report 84–42–1, Exxon ResearchGoogle Scholar
  114. John F (1981) Partial differential equations. In: Applied mathematical sciences Vol 1. Springer, New York Heidelberg Berlin, p 4Google Scholar
  115. Johnston HS (1992) Atmospheric Ozone. Annu Rev Phys Chem 43:1ADSCrossRefGoogle Scholar
  116. Jones WP, Whitelaw JH (1985) Modelling and measurement in turbulent combustion. 20th Symp (Intl) Comb, The Combustion Institute, Pittsburgh, p 233Google Scholar
  117. Jost W (1939) Explosions und Verbrennungsvorgänge in Gasen. Julius Springer, BerlinGoogle Scholar
  118. Kauzmann W (1966) Kinetic theory of gases. Benjamin/Cummings, LondonGoogle Scholar
  119. Kee RJ, Miller JA (1987) A structures approach to the computational modeling of chemical kinetics and molecular transport, in: Warnatz J, Jäger W (eds.), Complex chemical reaction systems: Mathematical modelling and simulation. Springer, HeidelbergGoogle Scholar
  120. Kee RJ, Miller JA, Jefferson TH (1980) CHEMKIN: A general-purpose, problem-independent, transportable Fortran chemical kinetics code package. Sandia National Laboratories Report SAND80–8003Google Scholar
  121. Kee RJ, Rupley FM, Miller JA (1987) The CHEMKIN thermodynamic data base. SANDIA Report SAND87–8215, Sandia National Laboratories, Livermore CAGoogle Scholar
  122. Kee RJ, Rupley FM, Miller JA (1989a) CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories Report SAND89–8009Google Scholar
  123. Kee RJ, Miller JA, Evans GH, Dixon-Lewis G (1989b) A computational model of the structure and extinction of strained opposed-flow premixed methane-air flames. 22nd Symp (Intl) Comb, The Combustion Institute, Pittsburgh, p 1479Google Scholar
  124. Kent JH, Bilger RW (1976) The prediction of turbulent diffusion flame fields and nitric oxide formation. 16th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1643Google Scholar
  125. Kerstein AR (1992) Linear-eddy modelling of turbulent transport 7. Finite-rate chemistry and multistream mixing. J Fluid Mech 240:289ADSCrossRefGoogle Scholar
  126. Klaus P, Warnatz J (1995) A contribution towards a complete mechanism for the formation of NO in flames. Joint meeting of the French and German Sections of the Combustion Institute, MulhouseGoogle Scholar
  127. Kolb T, Jansohn P, Leuckel W (1988) Reduction of NOx emission in turbulent combustion by fuel-staging / effects of mixing and stoichiometry in the reduction Zone. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1193Google Scholar
  128. Kolmogorov AN (1942) Izw Akad Nauk SSSR Ser Phys 6:56Google Scholar
  129. Kordylewski W, Wach J (1982) Criticality for thermal ignition with reactant consumption. Comb Flame 45:219CrossRefGoogle Scholar
  130. Kramer MA, Kee RJ, Rabitz H (1982) CHEMSEN: A computer code for sensitivity analysis of elementary reaction models. SANDIA Report SAND82–8230, Sandia National Laboratories, Livermore CAGoogle Scholar
  131. Lam SH, Goussis DA (1989) Understanding complex chemical kinetics with computational singular perturbation. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 931Google Scholar
  132. Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press, London/New YorkzbMATHGoogle Scholar
  133. Lauterbach J, Asakura K, Rotermund HH (1995) Subsurface oxygen on Pt(100): kinetics of the transition from chemisorbed to subsurface state and its reaction with CO, H2, and O2. Surf Sci 313:52CrossRefGoogle Scholar
  134. Law CK (1989) Dynamics of stretched flames. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1381Google Scholar
  135. Lee JC, Yetter RA, Dryer FL (1995) Comb. Flame 101:387CrossRefGoogle Scholar
  136. Libby PA, Williams FA (1980) Fundamental aspects of turbulent reacting flows. In: Libby PA, Williams FA (eds) Turbulent reacting flows. Springer, New YorkGoogle Scholar
  137. Libby PA, Williams FA (1994) Turbulent reacting flows. Academic Press, New YorkzbMATHGoogle Scholar
  138. Liew SK, Bray KNC, Moss JB (1984) A stretched laminar flamelet model of turbulent non-premixed combustion. Comb Flame 56:199CrossRefGoogle Scholar
  139. Lilian A, Williams FA (1993) Fundamental Aspects of Combustion. Oxford University Press, OxfordGoogle Scholar
  140. Lindemann FA (1922) Trans Farad Soc 17:599CrossRefGoogle Scholar
  141. Liu Y, Lenze B (1988) The Influence of turbulence on the burning velocity of premixed CH4-H2 flames with different laminar burning velocities. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 747Google Scholar
  142. Ljungström S, Kasemo B, Rosen A, Wahnström T, Fridell E (1989) Surface Sci. 216:63ADSCrossRefGoogle Scholar
  143. Lobert JM, Warnatz J (1993) Emissions from the Combustion Process in Vegetation, in: Crutzen PJ, Goldammer JG (eds), Fire in the environment: The ecological, atmospheric, and climatic importance of vegetation fires (Dahlem Konferenzen ES 13), p 15. John Wiley & Sons, ChicesterGoogle Scholar
  144. Long MB, Levin PS, Fourguette DC (1985) Simultaneous two-dimensional mapping of species concentration and temperature in tubulent flames. Opt Lett 10:267ADSCrossRefGoogle Scholar
  145. Long MB, Smooke MD, Xu Y, Zurn RM, Lin P, Frank JH (1993) Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames. 24th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 813Google Scholar
  146. Lovell W (1948) Knocking characteristics of hydrocarbons. Ind Eng Chem 40:2388CrossRefGoogle Scholar
  147. Lovett JA, Abuaf N (1992) Emissions and stability characteristics of flameholders for lean-premixed combustion. Proc. International Gas Turbine and Aeroengine Congress, JASME 92-GT-120Google Scholar
  148. Lutz AE, Kee RJ, Miller JA (1987) A Fortran programto predict homogeneous gas-phase chemical kinetics including sensitivity analysis. SANDIA Report SAND87–8248, Sandia National Laboratories, Livermore CAGoogle Scholar
  149. Lutz AE, Kee RJ, Miller JA, Dwyer HA, Oppenheim AK (1989) Dynamic effects of autoi-gnition centers for hydrogen and C1,2-hydrocarbon fuels. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1683Google Scholar
  150. Lyon RK (1974) U.S. Patent No 3 900 544Google Scholar
  151. Maas U (1990) private communicationGoogle Scholar
  152. Maas U, Pope SB (1992) Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Comb Flame 88:239CrossRefGoogle Scholar
  153. Maas U, Pope SB (1993) Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. 24th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p103Google Scholar
  154. Maas U, Warnatz J (1988) Ignition processes in hydrogen-oxygen mixtures. Comb Flame 74:53CrossRefGoogle Scholar
  155. Maas U, Warnatz J (1989) Solution of the 2D Navier-Stokes equation using detailed chemistry. Impact of Computing in Science and Engineering 1:394zbMATHCrossRefGoogle Scholar
  156. Magre P, Dibble RW (1988) Finite chemical kinetic effects in a subsonic turbulent hydrogen flame. Comb Flame 73:195CrossRefGoogle Scholar
  157. Malte PC, Pratt DT (1974) Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion. 15th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1061Google Scholar
  158. Marsal (1976) Die numerische Lösung partieller Differentialgleichungen in Wissenschaft und Technik. Bibliographisches Institut Mannheim/Wien/ZürichzbMATHGoogle Scholar
  159. Masri AR, Bilger RW, Dibble RW (1988) Turbulent nonpremixed flames of methane near extinction: probability density functions. Comb Flame 73:261CrossRefGoogle Scholar
  160. Mathur S, Tondon PK, Saxena SC (1967) Heat conductivity in ternary gas mixtures. Mol Phys 12:569ADSCrossRefGoogle Scholar
  161. McMillin BK, Palmer JL, Hanson RK (1993) Temporally resolved two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow. Appi Optics 32:7532ADSCrossRefGoogle Scholar
  162. McMurtry PA, Menon S, Kerstein AR (1992) A linear eddy sub-grid model for turbulent reacting flows: application to hydrogen-air combustion. 24th Symp (Intl) Comb, The Combustion Institute, Pittsburgh, p 271Google Scholar
  163. Miller JA, Melius CF (1991) 202nd ACS National Meeting, New York, p 1440Google Scholar
  164. Mittelbach G, Voje H (1986) Anwendung des SNCR-Verfahrens hinter einer Zyklonfeuerung. In: NOx-Bildung und NOx-Minderung bei Dampferzeugern für fossile Brennstoffe. VGB-HandbuchGoogle Scholar
  165. Morley C (1987) A fundamentally based correlation between alkane structure and octane number. Comb Sci Technol 55:115CrossRefGoogle Scholar
  166. Moss JB (1979) Simultaneous measurements of concentration and velocity in an open pre-mixed turbulent flame. Comb Sci Technol 22:115Google Scholar
  167. Nguyen QV, Edgar BL, Dibble RW (1995) Experimental and numerical comparison of extractive and in-situ laser measurements of non-equilibrium carbon monoxide in lean-pre-mixed natural gas combustion. Comb Flame 100:395CrossRefGoogle Scholar
  168. Nowak U, Warnatz J (1988) Sensitivity analysis in aliphatic hydrocarbon combustion. In: Kuhl AL, Bowen JR, Leyer J-C, Borisov A (eds) Dynamics of reactive systems, Part I. AIAA, New York, p 87Google Scholar
  169. NOx-Symposium Karlsruhe, Proceedings (1985). Rentz O, Ißle F, Weibel M (Hrsg). VDI, DüsseldorfGoogle Scholar
  170. Onsager L (1931) Phys Rev 37:405, 38:2265ADSCrossRefGoogle Scholar
  171. Oppenheim AK, Manson N, Wagner HGg (1963) AIAA J 1:2243CrossRefGoogle Scholar
  172. Oran ES, Boris JP (1993) Computing turbulent shear flows — a convenient conspiracy. Computers in Physics 7:523Google Scholar
  173. Peters N (1987) Laminar flamelet concepts in turbulent combustion. 21st Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1231Google Scholar
  174. Peters N, Warnatz J (eds) (1982) Numerical methods in laminar flame propagation. Vieweg-Verlag, WiesbadenzbMATHGoogle Scholar
  175. Pitz WJ, Warnatz J, Westbrook CK(1989) Simulation of auto-ignition over a large temperature Range. 22nd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 893Google Scholar
  176. Poinsot T, Veynante D, Candel S (1991) Diagrams of premixed turbulent combustion based on direct simulation. 23th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 613Google Scholar
  177. Pope SB (1986) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119MathSciNetADSCrossRefGoogle Scholar
  178. Pope SB (1991) Computations of Turbulent Combustion: Progress and Challenges. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 591Google Scholar
  179. Prandtl L (1925) Über die ausgebildete Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik 5:136zbMATHGoogle Scholar
  180. Prandtl L (1945) Über ein neues Formelsystem der ausgebildeten Turbulenz. Nachrichten der Gesellschaft der Wissenschaften Göttingen, Mathematisch-Physikalische Klasse, p 6Google Scholar
  181. Raffel B, Warnatz J, Wolfrum J (1985) Experimental study of laser-induced thermal ignition in O2/O3 mixtures. Appi Phys B 37:189ADSCrossRefGoogle Scholar
  182. Raffel B, Warnatz J, Wolff H, Wolfrum J, Kee RJ (1986) Thermal ignition and minimum ignition energy in O2/O3 mixtures. In: Bowen JR, Leyer J-C, Soloukhin RI (eds), Dynamics of reactive systems, Part II, AIAA, New York, p 335Google Scholar
  183. Razdan MK, Stevens JG (1985) CO/air turbulent diffusion flame: Measurements and modeling. Comb Flame 59:289CrossRefGoogle Scholar
  184. Reynolds WC (1986) The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN version 3. Dept. of Engineering, Stanford UniversityGoogle Scholar
  185. Reynolds WC (1989) The potential and limitations of direct and large eddy simulation. In: Whither turbulence? Turbulence at crossroads. Lecture notes in physics, Springer, New York, p313Google Scholar
  186. Rhodes RP (1979) In: Murthy SNB (ed) Turbulent mixing in non-reactive and reactive flows, Plenum Press, New York, p 235Google Scholar
  187. Riedel U, Schmidt R, Warnatz J (1992) Different levels of air dissociation chemistry and Its coupling with flow models. In: Bertin JJ, Periaux J, Ballmann J (eds), Advances in Hypersonics — Vol. 2: Modeling Hypersonic Flows. Birkhäuser, BostonGoogle Scholar
  188. Riedel U, Schmidt D, Maas U, Warnatz J (1994) Laminar flame calculations based on automatically simplified chemical kinetics. Proc. Eurotherm Seminar #35, Compact Fired Heating Systems, Leuven, BelgiumGoogle Scholar
  189. Roberts WL, Driscoll JF, Drake MC, Goss LP (1993) Images of the quenching of a flame by a vortex — To quantify regimes of turbulent combustion. Comb Flame 94:58CrossRefGoogle Scholar
  190. Robinson PJ, Holbrook KA (1972) Unimolecular reactions. Wiley-Interscience, New YorkGoogle Scholar
  191. Rogg B, Behrendt F, Warnatz J (1987) Turbulent non-premixed combustion in partially pre-mixed diffusion flamelets with detailed chemistry. 21st Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1533Google Scholar
  192. Roshko A (1975) Progress and Problems in Turbulent Shear Flows. In: Murthy SNB (ed) Turbulent Mixing in Nonreactive and Reactive Flow, Plenum, New YorkGoogle Scholar
  193. Rosten H, Spalding B (1987) PHOENICS: Beginners guide; user manual; photon user guide. Concentration Heat and Momentum LTD, LondonGoogle Scholar
  194. Schwanebeck W, Warnatz J (1972) Reaktionen des Butadiins I: Die Reaktion mit Wasserstoffatomen. Ber Bunsenges Phys Chem 79:530Google Scholar
  195. Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. John Wiley and Sons, New YorkGoogle Scholar
  196. Semenov NN (1928) Z Phys Chem 48:571ADSGoogle Scholar
  197. Seitzman JM, Kychakoff G, Hanson RK (1985) Instantaneous temperature field measurements using planar laser-induced fluorescence. Opt Lett 10:439ADSCrossRefGoogle Scholar
  198. Sherman FS (1990) Viscous Flow. McGraw-Hill, New YorkzbMATHGoogle Scholar
  199. Shvab VA (1948) Gos Energ izd Moscow-LeningradGoogle Scholar
  200. Sick V, Arnold A, Dießel E, Dreier T, Ketterle W, Lange B, Wolfram J, Thiele KU, Behrendt F, Warnatz J (1991) Two-dimensional laser diagnostics and modeling of counterflow diffusion flames. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 495Google Scholar
  201. Sirignano WA (1984) Fuel droplet vaporization and spray combustion theory. Prog Energy Combust Sci 9:291ADSCrossRefGoogle Scholar
  202. Smith JR, Green RM, Westbrook CK, Pitz WJ (1984) An experimental and modeling study of engine knock. 20th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 91Google Scholar
  203. Smooke MD ed (1991) Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Lecture notes in physics 384, Springer, New YorkGoogle Scholar
  204. Smooke MD, Mitchell RE, Keyes DE (1989) Numerical solution of two-dimensional axisym-metric laminar diffusion flames. Comb Sci Technol 67:85CrossRefGoogle Scholar
  205. Smoot LD (1993) Fundamentals of coal combustion. Elsevier, Amsterdam/Oxford/New YorkGoogle Scholar
  206. Solomon PR, Hamblen DG Carangelo RM, Serio MA, Deshpande, GV (1987) A general model of coal devolatilization. ACS paper 58/ WP No 26Google Scholar
  207. Spalding DB (1970) Mixing and chemical reaction in steady confined turbulent flames. 13th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 649Google Scholar
  208. Speight JG (1994) The chemistry and technology of coal. Marcel Dekker, Amsterdam/New YorkGoogle Scholar
  209. Stahl G, Warnatz J (1991) Numerical investigation of strained premixed CH4-air flames up to high pressures. Comb Flame 85:285CrossRefGoogle Scholar
  210. Stapf P, Maas U, Warnatz J (1991) Detaillierte mathematische Modellierung der Tröpfchenverbrennung. 7. TECFLAM-Seminar „Partikel in Verbrennungsvorgängen”, Karlsruhe, p. 125. DLR StuttgartGoogle Scholar
  211. Stapf P, Maly R, Dwyer HA, Warnatz J (1994) A Numerical Study of Heating, Mixture Formation, and Detailed Combustion Around a Fuel Droplet Under Engine-Like Conditions. Proc. COMODIA, p 343. JSME, YokohamaGoogle Scholar
  212. Stefan J (1874) Sitzungsberichte Akad. Wiss. Wien II 68:325Google Scholar
  213. Stein SE, Walker JA, Suryan MM, Fahr A (1991) A new path to benzene in flames, 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 85Google Scholar
  214. Strehlow RA (1985) Combustion fundamentals. McGraw-Hill, New YorkGoogle Scholar
  215. Stull DR, Prophet H (eds) (1971) JANAF thermochemical tables. U.S. Department of Commerce, Washington DC, and addendaGoogle Scholar
  216. Subramanian VS, Buermann DH, Ibrahim KM, Bachalo WD (1995) Application of an integrated phase Doppler interferometer/rainbow thermometer7point-diffraction interferometer for characterizing burning droplets. 23rd Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 495Google Scholar
  217. Takeno T (1995) Transition and structure of jet diffusion flames. 25th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 1061Google Scholar
  218. Takeno T, Nishioka M, Yamashita H (1993) Prediction of NOx emission index of turbulent diffusion flames, in: Turbulence and molecular processes in combustion (Takeno T ed.), p. 375. Elsevier, Amsterdam/LondonGoogle Scholar
  219. Tien CL, Lienhard JH (1971) Statistical Thermodynamics. Holt, Rinehart, and Winston, New YorkGoogle Scholar
  220. Thorne AP (1988) Spectrophysics, 2nd ed, Chapman and Hall, London/New YorkCrossRefGoogle Scholar
  221. Tom HWK, Mate CM, Zhu XD, Crowell JE, Heinz TF, Somorjai GA, Shen YR (1984) Surface studies by optical second harmonic generation: the adsorption of O2, CO, and sodium on the Rh(l 11) surface. Phys Rev Lett 52:348ADSCrossRefGoogle Scholar
  222. Tsuji H, Yamaoka I (1967) The counterflow diffusion flame in the forward stagnation region of a porous cylinder. 11th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 979Google Scholar
  223. Tsuji H, Yamaoka I (1971) Structure analysis of counterflow diffusion flames in the forward stagnation region of a porous cylinder. 13th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 723Google Scholar
  224. v. Karman Th (1930) Mechanische Ähnlichkeit und Turbulenz. Nachrichten der Gesellschaft der Wissenschaften Göttingen, Mathematisch-Physikalische Klasse, p 58Google Scholar
  225. Wagner HGg (1979) Soot formation in combustion. 17th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 3Google Scholar
  226. Warnatz J (1978a) Calculation of the structure of laminar flat flames I: Flame velocity of freely propagating ozone decomposition flames. Ber Bunsenges Phys Chem 82:193Google Scholar
  227. Warnatz J (1978b) Calculation of the structure of laminar flat flames II: Flame velocity of freely propagating hydrogen-air and hydrogen-oxygen flames. Ber Bunsenges Phys Chem 82:643Google Scholar
  228. Warnatz J (1979) The structure of freely propagating and burner-stabilized flames in the H2-CO-O2 system. Ber Bunsenges Phys Chem 83:950Google Scholar
  229. Warnatz J (1981a) The structure of laminar alkane-, alkene-, and acetylene flames. 18th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 369Google Scholar
  230. Warnatz J (1981b) Concentration-, pressure-, and temperature dependence of the flame velocity in the hydrogen-oxygen-nitrogen mixtures. Comb Sci Technol 26:203CrossRefGoogle Scholar
  231. Warnatz J (1981c) Chemistry of stationary and instationary combustion processes. In: Ebert KH, Deuflhard P, Jäger W (eds) Modelling of chemical reaction systems, Springer, Heidelberg, p 162CrossRefGoogle Scholar
  232. Warnatz J (1982) Influence of transport models and boundary conditions on flame structure. In: Peters N, Warnatz J (eds), Numerical methods in laminar flame propagation, Vieweg, WiesbadenGoogle Scholar
  233. Warnatz J (1983) The mechanism of high temperature combustion of propane and butane. Comb Sci Technol 34:177CrossRefGoogle Scholar
  234. Warnatz J (1984) Critical survey of elementary reaction rate coefficients in the C/H/O system. In: Gardiner WC jr. (ed) Combustion chemistry. Springer-Verlag, New YorkGoogle Scholar
  235. Warnatz J (1987) Production and homogeneous selective reduction of NO in combustion processes. In: Zellner R (ed) Formation, distribution, and chemical transformation of air pollutants. DECHEMA, Frankfurt, p 21Google Scholar
  236. Warnatz J (1988) Detailed studies of combustion chemistry. Proceedings of the contractors’ meeting on EC combustion research, EC, Bruxelles, p 172Google Scholar
  237. Warnatz J (1990) NOx Formation in high-temperature processes. Eurogas ‘90, Tapir, Trond-heim, p 303Google Scholar
  238. Warnatz J (1991) Simulation of ignition processes. In: Larrouturou B (ed) Recent advances in combustion modeling. World Scientific, Singapore, p 185Google Scholar
  239. Warnatz J (1993) Resolution of gas phase and surface chemistry into elementary reactions. 24th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 553Google Scholar
  240. Warnatz J, Chevalier C (1995) Survey of Reactions in the C/H/O System, in: Gardiner WC jr. (ed), Combustion Chemistry. Springer, New York, in pressGoogle Scholar
  241. Warnatz J, Bockhorn H, Moser A, Wenz HW (1983) Experimental investigations and computational simulations of acetylene-oxygen flames from near stoichiometric to sooting conditions. 19th Symp (Intl) Comb, The Combustion Institute, Pittsburgh, p 197Google Scholar
  242. Warnatz J, Allendorf MD, Kee RJ, Coltrin ME (1994) A model of hydrogen-oxygen combustion on flat-plate platinum catalytist. Combust. Flame 96:393CrossRefGoogle Scholar
  243. Weinberg FJ (1975) The first half-million years of combustion research and today’s burning problems. 15th Symp (Intl) Comb, The Combustion Institute, Pittsburgh, p 1Google Scholar
  244. Weinberg FJ (1986) Advanced combustion methods. Academic Press, London/OrlandoGoogle Scholar
  245. Westbrook CK, Dryer FL (1981) Chemical kinetics and modeling of combustion processes. 18th Symp (Int) Comb, The Combustion Institute, Pittsburgh, p 749Google Scholar
  246. Williams A (1990) Combustion of liquid fuel sprays. Butterworth & Co, LondonGoogle Scholar
  247. Williams FA (1984) Combustion theory. Benjamin/Cummings, Menlo ParkGoogle Scholar
  248. Williams WR, Marks CM, Schmidt LD (1992) Steps in the reaction H2 + O2 = H2O on Pt: OH desorption at high temperature. J Chem Phys 96:5922Google Scholar
  249. Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18:517ADSCrossRefGoogle Scholar
  250. Wolfram J (1972) Bildung von Stickstoffoxiden bei der Verbrennung. Chemie-Ingenieur-Technik 44:656CrossRefGoogle Scholar
  251. Wolfrum J (1986) Einsatz von Excimer- und Farbstofflasern zur Analyse von Verbrennungsprozessen VDI Berichte 617:301Google Scholar
  252. Wolfrum J (1992) Laser in der Reaktionstechnik-Analytik und Manipulation. Chem Ing-Tech 64, Nr 3:242CrossRefGoogle Scholar
  253. Xu J, Behrendt F, Warnatz J (1994) 2D-LIF Investigation of Early Stages of Flame Kernel Development after Spark Ignition. Proc. COMODIA, p. 69. JSME, YokohamaGoogle Scholar
  254. Yang JC, Avedisian CT (1988) The combustion of unsupported heptane/hexadecane mixture droplets at low gravity. 22nd Symp (Intl) Comb, The Combustion Institute, Pittsburgh, p 2037Google Scholar
  255. Zeldovich YB (1946) The oxidation of nitrogen in combustion and explosions. Acta Physicochim. USSR 21:577Google Scholar
  256. Zeldovich YB (1949) Zhur Tekhn Fiz 19, 1199; English: NACA Tech Memo No 1296(1950)Google Scholar
  257. Zeldovich YB, Frank-Kamenetskii DA (1938) The theory of thermal propagation of flames. Zh Fiz Khim 12:100Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jürgen Warnatz
    • 1
  • Ulrich Maas
    • 2
  • Robert W. Dibble
    • 3
  1. 1.Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergHeidelbergGermany
  2. 2.Konrad-Zuse-Zentrum für InformationstechnikBerlinGermany
  3. 3.Dept. of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations