Electron Spectrum in Crystals, Quantum Wells and Superlattices

  • Eougenious L. Ivchenko
  • Grigory Pikus
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 110)


We shall briefly digress from group theory to get acquainted with the so-called k-p method. It is the simplest method for calculating carrier spectra near extreme points, i.e., the conduction-band minima and valence-band maxima; it essentially represents a variant of perturbation theory. The effective-mass approximation and the theory of deformation potential, which permit description of the effect of external, magnetic and electric, fields as well as of the interactions of carriers with lattice vibrations, may be considered a natural development of the k-p method. All these concepts enjoy widespread use in the theory of semiconductors and of materials where the carrier concentration is usually much lower than the number of lattice atoms, and therefore the electrons and holes cluster near the extrema.


Electron Spectrum Heavy Hole Secular Equation Hole Spectrum Kane Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    T. Ando, S. Wakahara, H. Akera: Phys. Rev. B 40, 11609 (1989)CrossRefGoogle Scholar
  2. 3.2
    S.R. White, L.I. Sham: Phys. Rev. Lett. 47, 879 (1981)CrossRefGoogle Scholar
  3. 3.3
    Q.-G. Zhu, H. Kroemer: Phys. Rev. B 27, 3519 (1983)CrossRefGoogle Scholar
  4. 3.4
    K.B. Kahen, J.P. Leburton: Phys. Rev. B 33, 5465 (1986)CrossRefGoogle Scholar
  5. 3.5
    T. Ando, H. Akera: Phys. Rev. B 40, 11619 (1989)CrossRefGoogle Scholar
  6. 3.6
    R.A. Morrow, K.R. Brownstein: Phys. Rev. B 30, 678 (1984)CrossRefGoogle Scholar
  7. 3.7
    G.L. Bir, G.E. Pikus: Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York 1974)Google Scholar
  8. 3.8
    W. Shockley: Phys. Rev. 78, 173 (1950)CrossRefGoogle Scholar
  9. 3.9
    R.I. Elliott: Phys. Rev. 96, 266 (1954)CrossRefGoogle Scholar
  10. 3.10
    R.J. Elliott: Phys. Rev. 96, 280 (1954)CrossRefGoogle Scholar
  11. 3.11
    G. Dresselhaus, A.F. Kip, C. Kittel: Phys. Rev. 98, 368 (1955)CrossRefGoogle Scholar
  12. 3.12
    J.M. Luttinger: Phys. Rev. 102, 1030 (1956)CrossRefGoogle Scholar
  13. 3.13
    E.O. Kane: J. Phys. Chem. Solids 1, 82 (1957)Google Scholar
  14. 3.14
    E.O. Kane: J. Phys. Chem. Solids 1, 249 (1957)Google Scholar
  15. 3.15
    R.A. Suris: Fiz. Tekhn. Popuprovodn. 20, 2008 (1986) [Sov. Phys. - Semicond. 20, 1258 (1986)]Google Scholar
  16. R.A. Suris, A.B. Sokolskii: Fiz. Tekhn. Popuprovodn. 21, 866 (1987) [Sov. Phys. - Semicond. 21, 529 (1987)]Google Scholar
  17. 3.16
    H.-R. Trebin, U. Rössler, R. Ranvaud: Phys. Rev. B 20, 686 (1979)CrossRefGoogle Scholar
  18. 3.17
    D.L. Smith, C. Mailhiot: Rev. Mod. Phys. 69, 173 (1990)CrossRefGoogle Scholar
  19. 3.18
    N.M. Ashkroft, N.D. Mermin: Solid State Physics (Holt, Rinehart and Winston, New York 1976)Google Scholar
  20. 3.19
    I.A. Aleiner, E.L. Ivchenko: Fiz. Tekhn. Popuprovodn. 27, 594 (1993) [Semiconductors 27, 330 (1993)]Google Scholar
  21. Y. Fu, M. Willander, E.L. Ivchenko, A.A. Kiselev: Phys. Rev. B 47, 13498 (1993)CrossRefGoogle Scholar
  22. 3.20
    G. Bastard: Phys. Rev. B 24, 5693 (1981)CrossRefGoogle Scholar
  23. 3.21
    G. Bastard: Phys. Rev. B 25, 7584 (1982)CrossRefGoogle Scholar
  24. 3.22
    D.L. Smith, C. Mailhiot: Phys. Rev. B 33, 8345 (1986)CrossRefGoogle Scholar
  25. 3.23
    C. Mailhiot, D.L. Smith: Phys. Rev. B 33, 8360 (1986)CrossRefGoogle Scholar
  26. 3.24
    R. Eppenga, M.F.H. Schuurmans, S. Colak: Phys. Rev. B 36, 1554 (1987)CrossRefGoogle Scholar
  27. 3.25
    C.M. de Sterke, D.G. Hall: Phys. Rev. B 35, 1380 (1987)CrossRefGoogle Scholar
  28. 3.26
    C. Mailhiot, D.L. Smith: Phys. Rev. B 35, 1242 (1987)CrossRefGoogle Scholar
  29. 3.27
    Y.C. Chang, G.D. Sanders, D.Z.-Y. Ting: In Exdtons ill Confined Systems, ed. by R. Del Sole, A.D. Andrea, A Lapiccirello. Springer Proc. Phys. 25, 159 (Springer, Berlin, Heidelberg 1988)Google Scholar
  30. 3.28
    S.S. Nedorezov: Fiz. Tverd. Tela 12, 2269 (1970) [Sov. Phys. - Solid State 12, 1814 (1971)]Google Scholar
  31. 3.29
    D.A. Broido, L.Y. Cham: Phys. Rev. B 31, 888 (1985)CrossRefGoogle Scholar
  32. 3.30
    R. Wessel, M. Altarelli: Phys. Rev. B 40, 12457 (1989)CrossRefGoogle Scholar
  33. 3.31
    A.M. Cohen, G.E. Marques: Phys. Rev. B 41, 10608 (1990)CrossRefGoogle Scholar
  34. 3.32
    A. Matulis, K. Piragas: Fiz. Tekhn. Poluprovodn. 9, 220 (1975) [Sov. Phys. - Semicond. 9, 1432 (1976)]Google Scholar
  35. 3.33
    L.G. Gerchikov, A.V. Subashiev: Phys. Stat. Sol. (b) 160, 443 (1990)CrossRefGoogle Scholar
  36. 3.34
    J.C. Maan: In Two-Dimensional Systems. Hetrostructures, and Superlattices, ed. by G. Bauer, F. Kuchar, H. Heinrich, Springer Ser. Solid State Sci., Vol.53(Springer, Berlin, Heidelberg 1984) p.183Google Scholar
  37. 3.35
    G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki: Phys. Rev. B 28, 3241 (1983)CrossRefGoogle Scholar
  38. 3.36
    G.H. Wannier: Rev. Mod. Phys. 34, 645 (1962)CrossRefGoogle Scholar
  39. 3.37
    W.V. Houston: Phys. Rev. 57, 184 (1940)CrossRefGoogle Scholar
  40. 3.38
    L.V. Keldysh: Zh. Exper. Teor. Fiz. 33, 994 (1957) [Sov. Phys. - JETP 6, 763 (1958)]Google Scholar
  41. 3.39
    A.G. Aronov, G.E. Pikus: Zh. Exper. Teor. Fiz. 51, 281 (1966) [Sov. Phys. -JETP 24, 188 (1967)]Google Scholar

Additional Reading k.p Method

  1. Bouckaert L.P., R. Smoluchowski, E. Wigner: Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58 (1936)CrossRefGoogle Scholar
  2. Lage F.C. von der, H.A. Bethe: A method for obtaining electronic eigenfunctions and eigenvalues in solids with an application to sodium. Phys. Rev. 71, 612 (1947)CrossRefGoogle Scholar
  3. Montasser S.S.: Analytical technique for extracting the eigenvalues of the kp matrix that represent the band structure of semiconductors. Phys. Rev. B 42, 7513 (1990)CrossRefGoogle Scholar
  4. Rashba, E.I.: Symmetry of energy bands in wurtzite-type crystals. I. Symmetry of bands neglecting the spin-orbit interaction. Fiz. Tverd. Tela 1, 407 (1959) [Sov. Phys. - Solid State I, 368 (1959)]Google Scholar
  5. Rashba E.I., V.I. Sheka: Synunetry of energy bands in wurtzite-type crystals. II. Symmetry of bands taking into account the spin interactions. Fiz. Tverd. Tela, Sbornik II, p.162 (1959) (in Russian)Google Scholar
  6. Zak J.: The kp representation in the dynamics of electron in solids. Solid State Physics 27, 1 (Academic, New York 1972)Google Scholar

Effective Mass Theory

  1. Kittel C., A.H. Mitchell: The theory of donor and acceptor states in silicon and germanium. Phys. Rev. 96, 1488 (1954)CrossRefGoogle Scholar
  2. Luttinger J.M., W. Kohn: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955)CrossRefGoogle Scholar
  3. Pidgeon C.R., R.N. Brown: Interband magneto-absorption and Faraday rotation in InSb. Phys. Rev. 146, 575 (1966)CrossRefGoogle Scholar
  4. Wannier G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191 (1937)CrossRefGoogle Scholar

Deformation Potential Theory

  1. Bir G.L., G.E. Pikus: Theory of deformation potential for semiconductors with the complicated band structure. Fiz. Tverd. Tela 2, 2287 (1960) [Sov. Phys. - Solid State 2, 2039 (1961)]Google Scholar
  2. Herring C.: Transport properties of a many-valley semiconductor. Bell. Syst. Techn. J. 34, 237 (1955)Google Scholar
  3. Herring C., E. Vogt: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956)CrossRefGoogle Scholar
  4. Shockley W., J. Bardeen: Energy bands and mobilities in monoatomic semiconductors. Phys. Rev. 77, 407 (1950)CrossRefGoogle Scholar

Method of Invariants

  1. Koster G.F., H. Statz: Method of treating Zeeman splitting of paramagnetic ions in crystalline fields. Phys. Rev. 113, 445 (1959)CrossRefGoogle Scholar
  2. Pikus G.E.: A new method of calculation of the energy spectrum of current carriers in semiconductors. I. Case when the spin-orbit interaction is not taken into account. Zh. Eksp. Teor. Fiz. 41, 1258 (1961) [Sov. Phys. - JETP 14, 898 (1962)]Google Scholar
  3. Pikus G.E.: A New method for calculating the energy spectrum of current carriers in semiconductors. II. Spin-orbit coupling is taken into account. Zh. Eksp. Teor. Fiz. 41, 1507 (1961) [Sov. Phys. - JETP 14, 1075 (1962)]Google Scholar
  4. Pikus G.E.: Polarization of exciton radiation of silicon in the presence of magnetic field or uniaxial strain. Fiz. Tverd. Tela 19, 1653 (1977) [Sov. Phys. - Solid State 19, 965 (1977)]Google Scholar
  5. Rashba E.I., V.I. Sheka: Combined resonance on acceptor centers. Fiz. Tverd. Tela, 6, 576 (1964) [Sov. Phys. - Solid State 6, 451 (1964)]Google Scholar
  6. Statz H., G.F. Koster: Zeeman splittings of paramagnetic atoms in crystalline fields. Phys. Rev. 115, 1568 (1959)CrossRefGoogle Scholar

Electron and Hole Spectrum in Cubic Crystals

  1. Braunstein R., E.O. Kane: The valence band structure of the III-V compounds. J. Phys. Chern. Sol. 23, 1423 (1962)CrossRefGoogle Scholar
  2. Cardona M., N.E. Christensen, G. Fasol: Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors. Phys. Rev. B 38, 1806 (1988)CrossRefGoogle Scholar
  3. Dresselhaus G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580 (1955)CrossRefGoogle Scholar
  4. Groves S.H., R.N. Brown, C.R. Pidgeon: Interband magnetoreflection and band structure of HgTe. Phys. Rev. 161, 779 (1967)CrossRefGoogle Scholar
  5. Montasser S.S.: Analytic approach to the inversion-asymmetry splitting of the valence band in zinc-blende-type semiconductor. Phys. Rev. B 48, 12285 (1994)Google Scholar
  6. Pikus G.E., V.A. Marushchak, A.N. Titkov: Spin splitting of energy bands and spin relaxation of carriers in cubic III-V crystals (Review). Fiz. Tekhn. Poluprovodn. 22, 185 (1988) [Sov. Phys. - Semicond. 22, 115 (1988)]Google Scholar
  7. Rashba E.I., V.I. Sheka: Combined resonance of band electrons in crystals with zincblende lattice. Fiz. Tverd. Tela 3, 1735 (1961) [Sov. Phys. - Solid State 3, 1257 (1961)]Google Scholar
  8. Zawadski W., IT. Yoon, C.L. Litter, X.N. Song, P. Pfeffer: Anisotropy of the conduction band of InSb: Orbital and spin properties. Phys. Rev. B 46, 9469 (1992)CrossRefGoogle Scholar

Electron Spectrum in Strained Cubic Crystals

  1. Adams E.N.: Elastoresistance in p-type Ge and Si. Phys. Rev. 96, 803 (1954)CrossRefGoogle Scholar
  2. Bahder T.B.: Analytic dispersion relations near г point in strained zinc-blende crystals. Phys. Rev. B 45, 1629 (1992)CrossRefGoogle Scholar
  3. Bir G.L., G.E. Pikus: Effect of strain on energy spectrum and electrical properties of InSb-type semiconductors. Fiz. Tverd. Tela 3, 3050 (1961) [Sov. Phys. - Solid State 3, 2221 (1962)]Google Scholar
  4. Blacha A., H. Presting, M. Cardona: Deformation potentials of k=O states of tetrahedral semiconductors. Phys. Stat. Sol. (b) 126, 11 (1984)CrossRefGoogle Scholar
  5. Pikus G.E., G.L. Bir: Effect of strain on energy spectrum and electrical properties of p-type germanium and silicon. Fiz. Tverd. Tela 1, 1642 (1959) [Sov. Phys. - Solid State 1, 1502 (1960)]Google Scholar
  6. Pollak F.H., M. Cardona: Piezo-electroreflectance in Ge, GaAs and Si. Phys. Rev. 172, 816 (1968)CrossRefGoogle Scholar
  7. Silver M., W. Batty, E.P.O. Reilly: Strain- induced valence subband splitting in III-V semiconductors. Phys. Rev. B 46, 6781 (1992)CrossRefGoogle Scholar

Spectrum of Electrons and Holes in Quantum Wells and Superlattices a) Nondegenerate Bands, Many-Band Models

  1. Ando T.: Valley mixing in short-period superIattices and the interface matrix. Phys. Rev. B 47, 9621 (1993)CrossRefGoogle Scholar
  2. Burnett J.H., H.M. Cheong, W. Paul, E.S. Koteles, B. Elman: Γ-X mixing in GaAs/ Alx Ga1-x As coupled double quantum wells under hydrostatic pressure. Phys. Rev. B 47, 1991 (1993)CrossRefGoogle Scholar
  3. Chuliang Y., Y. Qing: Sublevels and excitons in GaAs-AlxGa1-x As parabolic-quantum-well structures. Phys. Rev. B 37, 1364 (1988)CrossRefGoogle Scholar
  4. Cnypers J.P., W. Van Haering: Coupling between Γ and X type envelope function at GaAs/ AI(Ga)As interface. Phys. Rev. B 48, 11469 (1993)CrossRefGoogle Scholar
  5. Gershoni D., J. Oiknine-Schlesinger, E. Ehrenfreund, D. Ritter, R.A. Hamm, M.B. Panish: Minibands in the continuum of multi-quantum-well superlattices. Phys. Rev. Lett. 71, 2975 (1993)CrossRefGoogle Scholar
  6. Einevoll G.T., L.T. Sham: Boundary conditions for envelope functions at interfaces between dissimilar materials. Phys. Rev. B 49, 10533 (1994)CrossRefGoogle Scholar
  7. Ekenberg U.: Nonparabolicity effects in a quantum well: Sublevel shift, parallel mass and Landau levels. Phys. Rev. B 40, 7714 (1989)CrossRefGoogle Scholar
  8. EJci A.: Effective band Hamiltonian in semiconductor quantum wells. Phys. Rev. B. 49, 7432 (1994)CrossRefGoogle Scholar
  9. Foreman B.A.: Effective mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Phys. Rev. B 48, 4964 (1993)CrossRefGoogle Scholar
  10. Laikhtman B.: Boundary conditions for envelope functions in heterostructures. Phys. Rev. B 46, 4769 (1992)CrossRefGoogle Scholar
  11. Lommer G., F. Malcher, U. Rossler: Spin splitting in semiconductor heterostructures for B→0. Phys. Rev. Lett. 60, 728 (1988)CrossRefGoogle Scholar
  12. Luo J., H. Munekata, F.F. Fang, P.Y. Stilles: Effects of inversion asymmetry on electron energy band structures in GaSb/InAs/ GaSb quantum wells. Phys. Rev. B 41, 7685 (1990)CrossRefGoogle Scholar
  13. Pötz W, D.K. Ferry: On the boundary conditions for envelope-function approaches for heterostructures. Superlatt. Microstruct. 3, 57 (1987)CrossRefGoogle Scholar
  14. Rashba E.I., E.Ya. Sherman: Spin-orbital band splitting in symmetric quantum wells. Phys. Lett. A 129, 175 (1988)CrossRefGoogle Scholar
  15. Shi J., S. Pan: Envelope wave functions and subbband energies in superlattices with complex bases: analytical solution and numerical examples. Phys. Rev. B 48, 8136 (1993)CrossRefGoogle Scholar
  16. Ting D.Z.- Y., Y.-C. Chang: Γ-X mixing in GaAs/ Alx Ga1-x As and Alx Ga1-x As/ AlAs superlattices. Phys. Rev. B 36, 4359 (1987)CrossRefGoogle Scholar
  17. Vecris G., J.J. Quinn: Novel diagrammatic method for analysis of finite periodic and aperiodic multilayer structures. Solid State Commun. 76, 1071 (1990)CrossRefGoogle Scholar
  18. Winkler R., U. Rossler: General approach to the envelope function approximation based on a quadrature method. Phys. Rev. B 48, 8918 (1993)CrossRefGoogle Scholar

b) Degenerate Bands and Many- Band Models

  1. Altarelli M., U. Ekenberg, A. Fasolino: Calculations of hole subbands in semiconductor quantum wells and superlattices. Phys. Rev. B 32, 5138 (1985)CrossRefGoogle Scholar
  2. Cuypers J.P., W. van Haeringen: Connection rules for envelope functions at semiconductor-heterostructure interfaces. Phys. Rev. B 47, 10310 (1993)CrossRefGoogle Scholar
  3. Dyakonov M.I., A.V. Khaetskii: Size quantization of holes in a semiconductor with complicated valence band and of carriers in a gapless semiconductor. Zh. Eksp. Teor. Fiz. 82, 1584 (1982) [Sov. Phys. - JETP 55, 917 (1982)]Google Scholar
  4. Edwards G., J.c. Inkson: Hole states in GaAs/ AlAs heterostructures and the limitations of the Luttinger model. Solid State Commun. 89, 595 (1994)CrossRefGoogle Scholar
  5. Foreman B.A.: Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Phys. Rev. B 48, 4964 (1993)CrossRefGoogle Scholar
  6. Iconic Z., V. Milanovic, D. Tjapkin: Valence band structure of [100]-, [110]-, and [lll]-grown GaAs/ (AI, Ga)As quantum wells and the accuracy of the axial approximation. Phys. Rev. B 46, 4285 (1992)CrossRefGoogle Scholar
  7. Johnson N.F., H. Ehrenreich, P.M. Hui, P.M. Young: Electronic and optical properties of III-V and II-VI semiconductor superlattices. Phys. Rev. B 41, 3655 (1990)CrossRefGoogle Scholar
  8. Kriechbaum M.: Envelope function calculation for superlattices. In Two-Dimensional Systems and New Devices, ed. by G. Bauer, F. Kuchar, H. Heinrich, Springer Ser. Solid-State Sci., Vol.67 (Springer, Berlin, Heidelberg 1986) p.120Google Scholar
  9. Nojima S.: Anisotropy of optical transitions in [110] oriented quantum wells. Phys. Rev. B 47, 13535 (1993)Google Scholar
  10. Reboredo F.A., C.R. Proetto: Two-dimensional hole gas in acceptor δ.-doped GaAs. Phys. Rev. B 47, 4655 (1993)Google Scholar
  11. Richards D., J. Wagner, H. Schneider, G. Hendorfer, M. Maier, A. Fischer, K. Ploog: Two-dimensional hole gas and Fermi-edge singularity in Be-δ-doped GaAs. Phys. Rev. B 47, 9629 (1993)Google Scholar

c) Strained Qunntum Wells and Superlattices

  1. Anastassakis E.: Piezoelectric fields in strained heterostructures and superlattices. Phys. Rev. B 46, 4744 (1992)CrossRefGoogle Scholar
  2. Baliga A., D. Tzivedi, N.G. Anderson: Tensile-strain effects in quantum well and superlattice band structure. Phys. Rev. B 49, 10402 (1994)CrossRefGoogle Scholar
  3. Boring P., B. Gil, K.1. Moore: Optical properties and electronic structure of thin (Ga,In)As/ AlAs multiple quantum wells and superlattices under internal and external strain fields. Phys. Rev. B 45, 8413 (1992)CrossRefGoogle Scholar
  4. Chao C.Y.-P., S.L. Chuang: Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Phys. Rev. B 46, 4110 (1992)CrossRefGoogle Scholar
  5. Fantner E.J., G. Bauer: Strained layer IV-VI semiconductor superlattices. In TwoDimensional Systems. Heterostructures, alld Superlattices, ed. by G. Bauer, F. Kuchar, H. Heinrich, Springer Ser. Solid-State Sci., Vol.53 (Springer, Berlin, Heidelberg 1984) p.207Google Scholar
  6. Foreman B.A.: Analytic model for the valence band structure of a straining quantum well. Phys. Rev. B 49, 1757 (1994)CrossRefGoogle Scholar
  7. Gil B., P. Lefebvre, P. Bonnel, H. Mathieu, C. Deparis, J. Massies, G. Neu, Y. Chen: Uniaxial-stress investigation of asymmetrical GaAs-(Ga,AJ)As double quantum wells. Phys. Rev. B 47, 1954 (1993)CrossRefGoogle Scholar
  8. Jancu J.M., D. Bertho, C. Jouanin, B. Gill, N. Pelekanos, N. Magnea, H. Mariette: Upper-conduction-band effects in heavily strained low dimensional zinc blende semiconductor system. Phys. Rev. B 49, 10802 (1994)CrossRefGoogle Scholar
  9. Kajikawa Y.: Anomaly in the in-plane polarization properties of (llO)-oriented quantum wells under [110] uniaxial stress. Phys. Rev. B 47, 3649 (1993)CrossRefGoogle Scholar
  10. Li T., HJ. Lozykowski, J.L. Reno: Optical properties of CdTe/Cd1-x Znx Te strainedlayer single quantum wells. Phys. Rev. B 46, 6961 (1992)CrossRefGoogle Scholar
  11. Moise T.S., LJ. Guido, R.C. Barker: Strain-induced heavy-hole-to-light-hole energy splitting in (111)B pseudomorphic Iny Ga1-y As quantum wells. Phys. Rev. B 47, 6758 (1993)CrossRefGoogle Scholar
  12. Sugawaza M., N. Okazaki, T. Fujii, S. Yamazaki: Conduction-band and valence-band structures in strained In1-x Gax As/InP quantum wells on (001) InP substrates. Phys. Rev. B 48, 8161 (1993)CrossRefGoogle Scholar
  13. Talwar D.N., J.P. Loehr, B. Jogai: Comperative study of band-structure calculations for type II InAs/Inx Ga1-xSb strained-layer super-lattices. Phys. Rev. B 49, 10345 (1994)CrossRefGoogle Scholar
  14. Valarades E.C.: Strong anisotropy of hole subbands in (311) GaAs/ AlAs quantum wells. Phys. Rev. B 46, 3935 (1992)CrossRefGoogle Scholar
  15. Voisin P.: Strained-layer superlattices_ In Two-Dimensional Systems. Heterostructures. and Superlattices, ed. by G. Bauer. F. Kuchar. H. Heinrich. Springer Ser. Solid-State Sci., Vo1.53 (Springer, Berlin, Heidelberg 1984) p.192Google Scholar

Quantum Wells and Superlattices in Magnetic and Electric Fields

  1. Agullo-Rueda F., E.E. Mendez, J.A. Brum, J.M. Hong: Coherence and localization in superlattices under electric fields. Surf. Sci. 228, 80 (1990)CrossRefGoogle Scholar
  2. Austin EJ., M. Jaros: Electronic structure of an isolated GaAs-GaAlAs quantum well in a strong electric field. Phys. Rev. B 31, 5569 (1985)CrossRefGoogle Scholar
  3. Bereford R.: Envelope functions for a three-band semiconductor in a uniform electric field. Phys. Rev. B 49, 13363 (1994)Google Scholar
  4. Fasolino A., Altarelli, M.: Subband structure and Landau levels in heterostructures. In Two-Dimensional Systems. Heterostructures. and Superlattices, ed. by G. Bauer, F. Kuchar, H. Heinrich, Springer Ser. Solid-State Sci., Vo1.53 (Springer, Berlin, Heidelberg 1984) p.176Google Scholar
  5. Ferreira R., G. Bastard: Wannier-Stark levels in the valence band of semiconductor mUltiple quantum wells. Phys. Rev. B 38, 8406 (1988)CrossRefGoogle Scholar
  6. Fukuyama H., R.A. Bari, H.C. Fogedby: Tightly bound electrons in a uniform electric field. Phys. Rev. B 8, 5579 (1973)CrossRefGoogle Scholar
  7. Goldoni G., A. Fasolino: Hole states in quantum wells in high in-plane magnetic fields: Implications for resonant magnetotunneling spectroscopy. Phys_ Rev. B 48, 4948 (1993)CrossRefGoogle Scholar
  8. Hagon J.P., M. Jaros: Stark shifts in GaAs/Ga1-x Alx As finite-length superlattices. Phys. Rev. B 41, 2900 (1990)CrossRefGoogle Scholar
  9. Hembree C.E., B.A. Mason, A. Zhang, J.A. Slinkman: Subband spectrum of a parabolic quantum well in a perpendicular magnetic field. Phys. Rev. B 46, 7588 (1992)CrossRefGoogle Scholar
  10. Ivchenko E.L., A.A. Kiselev: Electron g-Factor of quantum wells and superlattices. Fiz. Techn. Poluprovodn. 26, 1471 (1992) [Sov. Phys. - Semicond. 26, 827 (1992)]Google Scholar
  11. Kajikavawa Y.: Level anticrossing and related giant optical anisotropy caused by the Stark effect in a strained (001) quantum well. Phys. Rev. B 49, 8136 (1994)CrossRefGoogle Scholar
  12. Krieger J.B., GJ. Iafrate: Time evolution of Bloch electrons in a homogeneous electric field. Phys. Rev. B 33, 5494 (1986)CrossRefGoogle Scholar
  13. Matsuura M., T. Kamizato: Subbands and excitons in a quantum well in an electric field. Phys. Rev. B 33, 8385 (1986)CrossRefGoogle Scholar
  14. Merlin R.: Subband-Landau-level coupling in tilted magnetic fields: exact results for parabolic wells. Solid State Commun. 64, 99 (1987)CrossRefGoogle Scholar
  15. Pacheco M., Z. Barticevic, F. Claro: Optical response of a superlattice in parallel magnetic and electric fields. Phys. Rev. B 46, 15200 (1993)CrossRefGoogle Scholar
  16. Platero G., M. Altarelli: Valence-band levels and optical transitions in quantum wells in a parallel magnetic field. Phys. Rev. B 39, 3758 (1989)CrossRefGoogle Scholar
  17. Ritze M., NJ.M. Horing, R. Enderlein: Density of states and Wannier-Stark levels of superlattices in an electric field. Phys. Rev. B 47, 10437 (1993)CrossRefGoogle Scholar
  18. Schmidt K.H., N. Linder, G.H. Dohler, H.T. Grahn, K. Ploog, H. Schneider: Coexistence of Wannier-Stark transitions and miniband Franz-Keldysh oscillations in strongly coupled GaAs/ AlAs superlattices. Phys. Rev. Lett. 72, 2769 (1994)CrossRefGoogle Scholar
  19. Smith T.P., F.F. Fang: g-Factor of electrons in an lnAs quantum well. Phys. Rev. B 35, 7729 (1977)Google Scholar
  20. Wong S.L., R.W. Martin, M. Lakrimi, RJ. Nicholas, T.- Y. Seong, MJ. Mason, PJ. Walker: Optical and transport properties of piezoelectric [111]-oriented strained Ga1-x Inx Sb/GaSb quantum wells. Phys. Rev. B 48, 17885 (1993)CrossRefGoogle Scholar
  21. Zawadski W., S. Klahn, H. Merkt: Inversion electrons on narrow-band-gap semiconductors in crossed electric and magnetic fields. Phys. Rev. B 33, 6916 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Eougenious L. Ivchenko
    • 1
  • Grigory Pikus
    • 1
  1. 1.A.F. Ioffe Physico- Technical InstituteSt. PetersburgRussia

Personalised recommendations