Skip to main content

Physiologie der Leitung und der Verarbeitung des akuten Schmerzes

  • Chapter
Anästhesiologie
  • 41 Accesses

Zusammenfassung

Die Kenntnis der Physiologie des Schmerzes bildet die Grundlage für klinisches Handeln im Hinblick auf Möglichkeiten, die Schmerzleitung zu unterbrechen sowie die Schmerzwahrnehmung zu beeinflussen. So haben die Ergebnisse der Grundlagenforschung gerade des letzten Jahrzehnts erheblich zum Verständnis der Schmerzentstehung und -wahrnehmung beigetragen und die klinische Forschung zur Therapie von Schmerzzuständen beeinflußt. Ziel dieses Kapitels ist es deshalb, einerseits die grundlegenden Kenntnisse über die Physiologie und Pharmakologie der Nozizeption zu vermitteln, andererseits aber die Forschungsschwerpunkte und Erkenntnisse der letzten Jahre mit ihren wesentlichen Folgerungen für mögliche neue Therapieansätze in der Bekämpfung der Schmerzen aufzuzeigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abraham WC, Dragunow M, Tate WP (1991) The role of immediate early genes in the stabilization of longterm potentiation. Mol Neurobiol 5: 297 —314

    Google Scholar 

  2. Arndt JO, Klement W (1991) Pain evoked by polymodal stimulation of hand veins in humans. J Physiol 440: 467 —478

    Google Scholar 

  3. Bach-y-Rita P (1993) Neurotransmission in the brain by diffusion through the extracellular fluid: a review. Neuroreport 4:343 —350

    Google Scholar 

  4. Brownstein MJ (1993) A brief history of opiates, opioid peptides, and opiate receptors. Proc Natl Acad Sci USA 90: 5391–5393

    Article  PubMed  CAS  Google Scholar 

  5. Cervero F, Jänig W (1992) Visceral nociceptors: a new world order? TINS 15: 374–378

    PubMed  CAS  Google Scholar 

  6. Chapman V, Dickenson AH (1992) The combination of NMDA antagonism and morphine produces profound antinociception in the rat dorsal horn. Brain Res 573: 321–323

    Article  PubMed  CAS  Google Scholar 

  7. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259 —285

    Google Scholar 

  8. Cook M, Woolf CJ, Wall PD, McMahon SB (1987) Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 325: 151–153

    Article  PubMed  CAS  Google Scholar 

  9. Dahl JB, Kehlet H (1993) The value of pre-emptive analgesia in the treatment of postoperative pain. Br J Anaesth 70: 434–439

    Article  PubMed  CAS  Google Scholar 

  10. DeKoninck Y, Ribeiro-da-Silva A, Henry IL, Cuello AC (1992) Spinal neurons exhibiting a specific nozizeptive response receive abundant substance P-containing synaptic contacts. Proc Natl Acad Sci USA 89: 5073–5077

    Article  CAS  Google Scholar 

  11. Draisci G, Kajander KC, Dubner R, Bennett GJ, Iadarola MJ (1991) Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation. Brain Res 560: 186–192

    Article  PubMed  CAS  Google Scholar 

  12. Dray A (1992) Mechanisms of action of capsaicin-like molecules on sensory neurons. Life Sci 51:1159 —1165

    Google Scholar 

  13. Eide PK (1992) Stimulation of 5-HT1 receptors in the spinal cord changes substance P-induced behaviour. Neuropharmacology 31: 541— 545

    Google Scholar 

  14. Eisenach J, Detweiler D, Hood D (1993) Hemodynamic and analgesic actions of epidurally administered cloni-dine. Anesthesiology 78:277 —287

    Google Scholar 

  15. Gutstein HB, Bronstein DM, Akil H (1992) /3-Endorphin processing and cellular origin in rat spinal cord. Pain 51: 241–247

    Google Scholar 

  16. Henry JL (1993) Substance P and inflammatory pain: potential of substance P antagonists as analgesics. Agents Actions [Suppl] 41: 75 —87

    Google Scholar 

  17. Jänig W, Koltzenburg M (1991) Plasticity of sympathetic reflex organisation following cross-union of inappropriate nerves in the adult cat. J Physiol 436: 309–323

    PubMed  Google Scholar 

  18. Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88: 381–394

    Article  PubMed  CAS  Google Scholar 

  19. Kawabata A, Umeda N, Tagaki H (1993) L-Arginin exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway. Br J Pharmacol 109: 73–79

    PubMed  CAS  Google Scholar 

  20. Kindgen-Milles D, Klement W (1992) Pain and inflammatory responses evoked by bradykinin antagonists in the skin of humans Eur J Pharmacol 218:183 —185

    Google Scholar 

  21. Klement W, Arndt JO (1992) The role of nociceptors of cutaneous veins in the mediation of cold pain in man J Physiol 449: 73–83

    CAS  Google Scholar 

  22. Kristensen JD, Svensson B, Gordh T (1992) The NMDA-receptor antagonist CPP abolishes neurogenic „wind-up pain“ after intrathecal administration in humans. Pain 51: 249–253

    Article  PubMed  CAS  Google Scholar 

  23. Krumins SA, Kim DC, Igwe OJ, Larson AA (1993) DAMGO binding to mouse brain membranes: influence of salts, guanine nucleotides, substance P, and substance P fragments. Peptides 14: 309–314

    Article  PubMed  CAS  Google Scholar 

  24. Lotz M, Vaughan JH, Carson DA (1988) Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 241:1218 —1221

    Google Scholar 

  25. McQuay (1992) Pre-emptive analgesia. Br J Anaesth 37. 69: 1–3

    Article  Google Scholar 

  26. Meller ST, Dykstra C, Gebhart GF (1992) Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartatepro- 38. duced facilitation of the nociceptive tail-flick reflex. Eur J Pharmacol 214: 93 — 96

    Google Scholar 

  27. Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52: 127–136 39.

    Google Scholar 

  28. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971— 978

    Google Scholar 

  29. Morgan JI, Curran T (1989) Stimulus-transcription 40. coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12: 459–462 41.

    Google Scholar 

  30. Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence of a role of N-methyl- 42. D-aspartat receptors. J Pharmacol Exp Ther 260: 1209–1213

    Google Scholar 

  31. Perkins MN, Campbell E, Dray A (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor anta- 43. gonists, des-Arg9, [Leu8]-BK and HOE 140, in two models of persistent hyperalgesia in the rat. Pain 53: 191–197

    Article  PubMed  CAS  Google Scholar 

  32. Pertovaara A, Bravo R, Herdegen T (1993) Induction 44. and suppression of immediate-early genes in the rat brain by selective alpha-2-adrenoceptor agonist and antagonist following noxious peripheral stimulation. Neuroscience 64:117 —126 45.

    Google Scholar 

  33. Powell JJ, Todd AJ (1992) Light and electron microscope study of GABA-immunoreactive neurones in lamina III of rat spinal cord. J Comp Neurol 46. 315: 125–136

    Article  Google Scholar 

  34. Przewlocki R, Hassan AH, Lason W, Epplen C, Herz A, Stein C (1992) Gene expression and localization of 47. opiod peptides in immune cells of inflamed tissue: functional role in antinociception. Neuroscience 48: 491500

    Google Scholar 

  35. Quan DB, Wandres DL, Schroeder DJ (1993) Clonidine 48. in pain management. Ann Pharmacother 27: 313 —315

    Google Scholar 

  36. Rang HP, Bevan S, Dray A (1991) Chemical activation of nociceptive peripheral neurons. Br Med Bull 47: 534 —548

    Google Scholar 

  37. Ritter AM, Lewin GR, Kremer NE, Mendell LM (1991) Requirement of nerve growth factor in the development of myelinated nociceptors in vivo. Nature 350: 500502

    Google Scholar 

  38. Sandkühler J, Maisch B, Zimmermann M (1987) Raphe magnus-induced descending inhibition of spinal nociceptive neurons is mediated through contralateral spinal pathways in the cat. Neurosci Lett 76: 168172

    Google Scholar 

  39. Schuman EM, Madison DV (1991) A requirement for the intracellular messenger nitric oide in long term potentiation. Science 254:1503 —1506

    Google Scholar 

  40. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, Yale

    Google Scholar 

  41. Sorkin LS (1991) Nociceptive transmission within the spinal cord. Mt Sinai J Med 58: 208–216

    PubMed  CAS  Google Scholar 

  42. Stein C, Gramsch C, Herz A (1990) Intrinsic mechanisms of antinociception in inflammation: local opioid receptors and beta-endorphin. J Neurosci 10: 12921298

    Google Scholar 

  43. Stein C, Comisel K, Haimerl E, Yassouridis A, Lehr-Berger K, Herz A, Peter K (1991) Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N Engl J Med 325: 1123 —1126

    Google Scholar 

  44. Steranka LR, Manning DC, DeHaas CJ (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons and antagonists have analgesic actions. Proc Natl Acad Sci USA 85: 3245–3249

    Article  PubMed  CAS  Google Scholar 

  45. Torebjörk HE (1974) Afferent C units responding to mechanical, thermal and chemical stimuli in human non-glabrous skin Acta Physiol Scand 92: 374–390

    Google Scholar 

  46. Wall PD (1978) The gate control theory of pain mechanisms: a re-examination and re-statement. Brain 101: 1–18

    Article  PubMed  CAS  Google Scholar 

  47. Woolf CJ (1984) Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain 18:325 —343

    Google Scholar 

  48. Woolf CJ, Thomspon SW (1991) The induction and maintenance of central sensitation is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 44: 293–299

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klement, W. (1995). Physiologie der Leitung und der Verarbeitung des akuten Schmerzes. In: Doenicke, A., Kettler, D., List, W.F., Radke, J., Tarnow, J. (eds) Anästhesiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97553-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97553-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97554-7

  • Online ISBN: 978-3-642-97553-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics