Skip to main content

Hamiltonian Nonlinear Beam Dynamics

  • Chapter
  • 151 Accesses

Abstract

Deviations from linear beam dynamics in the form of perturbations and aberrations play an important role in accelerator physics. Beam parameters, quality and stability are determined by our ability to correct and control such perturbations. Hamiltonian formulation of nonlinear beam dynamics allows us to study, understand and quantify the effects of geometric and chromatic aberrations in higher order than discussed so far. Based on this understanding we may develop correction mechanisms to achieve more and more sophisticated beam performance. We will first discuss higher-order beam dynamics as an extension to the linear matrix formulation followed by specific discussions on aberrations. Finally, we develop the Hamiltonian perturbation theory for particle beam dynamics in accelerator systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Wiedemann: Particle Accelerator Physics I (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  2. K.L. Brown, R. Belbeoch, P. Bounin: Rev. Sci. Instrum. 35, 481 (1964)

    Article  ADS  Google Scholar 

  3. K.L. Brown: Proc. 5th Int’l Conf. on High Energy Accelerators, Frascati, Italy (1965) p.507

    Google Scholar 

  4. K.L. Brown: Adv. Particle Phys. 1, 71 (1967)

    Google Scholar 

  5. K.L. Brown, DC. Carey, Ch. Iselin, F. Rothacker: TRANSPORT - a computer program for designing charged particle beam transport systems, SLAC-75 (1972), CERN 73–16 (1973), and revisions in SLAC-91 (1977), CERN 80–4 (1980)

    Google Scholar 

  6. S. Kheifets, T. Fieguth, K.L. Brown, A.W. Chao, J.J. Murray, R.V. Servranckx, H. Wiedemann: 13th Int’l Conf. on High Energy Accelerators, Novosibirsk, USSR (1986)

    Google Scholar 

  7. PEP Conceptual Design Report. Stanford Linear Accelerator Center, Stanford Rept. SLAC-189 and LBL-4288 (1976)

    Google Scholar 

  8. H. Wiedemann: Chromaticity correction in large storage rings. SLAC Int. Note PEP-220 (1976)

    Google Scholar 

  9. K.L. Brown, R.V. Servranckx: Proc. 11th Int’l Conf. on High Energy Accelerators (Birkhauser, Basel 1980) p.656

    Google Scholar 

  10. J.J. Murray, K.L. Brown, T. Fieguth: 1987 IEEE Particle Accelerator Conf., Washington, DC. IEEE Catalog No. 87CH2387-9, 1331 (1987)

    Google Scholar 

  11. L. Emery: A wiggler-based ultra-low-emittance damping ring lattice and its chromatic correction. Ph.D. Thesis, Stanford University (1990)

    Google Scholar 

  12. R.V. Servranckx, K.L. Brown: IEEE Trans. NS-26, 3598 (1979)

    ADS  Google Scholar 

  13. B. Autin: Nonlinear betatron oscillations. AIP Conf. Proc. 153, 288 (American Institute of Physics, New York 1987)

    Google Scholar 

  14. B. Autin: The CERN anti proton collector. CERN 84–15, 525 (1984)

    Google Scholar 

  15. M.H.R. Donald: Chromaticity correction in circular accelerators and storage rings, Pt.I, a users guide to the HARMON program. SLAC Note PEP-311 (1979)

    Google Scholar 

  16. K.L. Brown, D.C. Carey, Ch. Iselin: DECAY TURTLE - a computer program for simulating charged particle beam transport systems, including decay calculations. CERN-74–2 (1974)

    Google Scholar 

  17. D.R. Douglas, A. Dragt: IEEE Trans. NS-28, 2522 (1981)

    ADS  Google Scholar 

  18. A. Wrulich: Proc. Workshop on accelerator orbit and particle tracking programs. Brookhaven National Laboratory, Rept. BNL-31761, 26 (1982)

    Google Scholar 

  19. PATPET is a combination of the programs PATRICIA and PETROS. The program PETROS allows to study the effect of errors and has been developed by Kewish and Steffen [5.20]. The combination of both programs was performed by Emery, Safranek and H. Wiedemann: Int. Note SSRL ACD-36, Stanford (1988)

    Google Scholar 

  20. J. Kewisch, K G. Steffen: Int. Rept. DESY PET 76/09 (1976)

    Google Scholar 

  21. F.T. Cole: Nonlinear transformations in action-angle variables. Int. Note, Fermilab TM-179, 2040 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiedemann, H. (1995). Hamiltonian Nonlinear Beam Dynamics. In: Particle Accelerator Physics II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97550-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97550-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97552-3

  • Online ISBN: 978-3-642-97550-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics