Laser Spectroscopy

  • Sune Svanberg
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 6)

Abstract

The wide applicability of lasers in spectroscopy is due to several factors. As we have seen, yery high intensities can be obtained in a small frequency interval. The favourable spatial properties of laser beams with the possibility of very good focussing is also of great importance. With the advent of tunable lasers, completely new types of experiments have become possible and investigations that were only barely possible with conventional light sources can now be readily performed. It is fair to state that tunable lasers have revolutionized optical spectroscopy. Several monographs and review articles on laser spectroscopy have been published [9.1–18]. A wealth of material is presented in the proceedings of international laser spectroscopy conferences [9.19–27].

Keywords

Microwave Uranium Barium Autocorrelation Refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    W. Demtröder. Laser Spectroscopy, 2nd edn. (Springer, Berlin, Heidelberg 1996)Google Scholar
  2. 9.2
    A. Corney: Atomic and Laser Spectroscopy (Clarendon, Oxford 1977)Google Scholar
  3. 9.3
    L.J. Radziemski, R.W. Solarz, J.A. Paisner (eds): Laser Spectroscopy and its Applications (Dekker, New York 1987)Google Scholar
  4. 9.4
    V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sciences, Vol.4 (Springer, Berlin, Heidelberg 1977)Google Scholar
  5. 9.5
    M.D. Levenson, S. Kano: Introduction to Nonlinear Spectroscopy, rev. ed. (Academic, New York 1988)Google Scholar
  6. 9.6
    Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)Google Scholar
  7. 9.7
    M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics, Theoretical Concepts (Wiley, New York 1986)Google Scholar
  8. 9.8
    S. Stenholm Foundations of Laser Spectroscopy (Wiley, New York (1984)Google Scholar
  9. 9.9
    A.L. Schawlow: Spectroscopy in a new light. Rev. Mod. Phys. 54, 697 (1982)ADSGoogle Scholar
  10. 9.10
    N. Bloembergen: Nonlinear optics and spectroscopy. Rev. Mod. Phys. 54, 685 (1982)ADSGoogle Scholar
  11. 9.11
    G.W. Series: Laser spectroscopy. Contemp. Phys. 25, 3 (1984)ADSGoogle Scholar
  12. 9.12
    B. Couillaud, A. Ducasse: New methods in high-resolution laser spectroscopy, in Progress in Atomic Spectroscopy, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1984) Pt.C, p.57Google Scholar
  13. 9.13
    R.C. Thompson: High-resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531 (1985)ADSGoogle Scholar
  14. 9.14
    H. Walther (ed.): Laser Spectroscopy of Atoms and Molecules, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976)Google Scholar
  15. 9.15
    K. Shimoda (ed.): High-Resolution Laser Spectroscopy, Topics Appl. Phys., Vol.13 (Springer, Berlin, Heidelberg 1976)Google Scholar
  16. 9.16
    Y. Prior, A. Ben-Reuven, M. Rosenbluh: Methods of Laser Spectroscopy (Plenum, New York 1986) R.A. Smith (ed.): Very High Resolution Spectroscopy (Academic, London 1976)Google Scholar
  17. 9.17
    A. Mooradian, T. Jaeger, P. Stokseth (eds.): Tunable Lasers and Applications, Springer Ser. Opt. Sci., Vol.3 (Springer, Berlin, Heidelberg 1976)Google Scholar
  18. 9.18
    M.D. Levenson, W.H. Yen (eds.): Lasers, Spectroscopy and New Ideas. A Tribute to A.L. Schawlow, Springer Ser. Opt. Sci., Vol54 (Springer, Berlin, Heidelberg 1987)Google Scholar
  19. 9.19
    R.G. Brewer, A. Mooradian (eds.): Laser Spectroscopy, Proc. 1st. Int’l Conf., Vail 1973 (Academic, New York 1974)Google Scholar
  20. 9.20
    S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsen, S.E. Harris (eds.): Laser Spectroscopy, Proc. 2nd. Int’l Conf., Megeve 1975, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975)Google Scholar
  21. 9.21
    J.L. Hall, J.L. Carlsten (eds.): Laser Spectroscopy III, Proc. 3rd. Int’l Conf., Jackson Lake 1977, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)Google Scholar
  22. 9.22
    H. Walther, K.W. Rothe (eds.): Laser Spectroscopy IV, Proc. 4th Int’l Conf., Rottach-Egern 1979, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979)Google Scholar
  23. 9.23
    A.R.W. McKellar, T. Oka, B.P. Stoicheff (eds.): Laser Spectroscopy V, Proc. 5th Int’l Conf., Jasper 1981, Springer Ser. Opt. Sci., Vol.30 (Springer, Berlin, Heidelberg 1981)Google Scholar
  24. 9.24
    H.P. Weber, W. Liithy (eds.).: Laser Spectroscopy VI, Proc. 6th Int’l Conf., In-terlaken 1983, Springer Ser. Opt. Sci., Vol.40 (Springer, Berlin, Heidelberg 1983)Google Scholar
  25. 9.25
    T.W. Hänsen, Y.R. Shen (eds.): Laser Spectroscopy VII, Proc. 7th Int’l Conf., Maui 1985, Springer Ser. Opt. Sci., Vol49 (Springer, Berlin, Heidelberg 1985)Google Scholar
  26. 9.26
    W. Persson, S. Svanberg (eds.): Laser Spectroscopy VIII, Proc. 8th Int’l Conf., Are 1987, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987)Google Scholar
  27. 9.27
    M.S. Feld, J.E. Thomas, A. Mooradian (eds.): Laser Spectroscopy IX (Academic, Boston 1989)Google Scholar
  28. 9.28
    C.J. Latimer: Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)ADSGoogle Scholar
  29. 9.29
    D. Kleppner: The spectroscopy of highly excited atoms, in Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) Pt.B, p.713 D. Kleppner, M.G. Littman, M.L. Zimmerman: Highly excited atoms. Sci. Am. 244, 130 (1981)Google Scholar
  30. 9.30
    R.F. Stebbings, F.B. Dunning (eds): Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge 1983)Google Scholar
  31. 9.31
    T.F. Gallagher: Rydberg atoms. Rep. Progr. Phys. 51, 143 (1988)ADSGoogle Scholar
  32. 9.32
    K.C. Harvey, B.P. Stoicheff: Fine structure of the n 2 D series in rubidium near the ionization limit. Contemp. Phys. 38, 537 (1977)Google Scholar
  33. 9.33
    K. Niemax: Spectroscopy using thermionic diode detectors, Appl. Phys. B 38, 147 (1985)Google Scholar
  34. 9.34
    T.W. Ducas, M.G. Littman, R.R. Freeman, D. Kleppner: Stark ionization of high-lying states of sodium. Contemp. Phys. 35, 366 (1975)Google Scholar
  35. 9.35
    T.F. Gallagher, L.M. Humphrey, R.M. Hill, S.A. Edelstein: Resolution of [m1] and [mj] levels in the electric field ionization of highly excited d-states of Na. Contemp. Phys. 37, 1465 (1976) T.F. Gallagher, L.M. Humphrey, R.M. Hill, W. Cooke, S.A. Edelstein: Fine structure intervals and polarizabilities of highly excited p and d states of sodium. Phys. Rev. A15, 1937 (1977)Google Scholar
  36. 9.36
    F.V. Kowalski, R.T. Hawkins, A.L. Schawlow: Digital wavemeter for cw lasers. J. Opt. Soc. Am. 66, 965 (1976).ADSGoogle Scholar
  37. 9.37
    J.L. Hall, S.A. Lee: Interferometric real time display of cw dye laser wavelengths with sub-Doppler accuracy. Appl. Phys. Lett. 29 367 (1976)ADSGoogle Scholar
  38. 9.38
    A. Fischer, K. Kullmer, W. Demtröder: Computer-controlled Fabry-Pérot wavemeter. Opt. Commun. 39, 277 (1981)ADSGoogle Scholar
  39. 9.39
    L.S. Lee, A.L. Schawlow: Multi-wedge wavemeter for pulsed lasers, Opt. Lett. 6,610(1981)ADSGoogle Scholar
  40. 9.40
    P. Juncar, J. Pinard: A new method for frequency calibration and laser control. Opt. Commun 14, 438 (1975)ADSGoogle Scholar
  41. 9.41
    T.W. Hänsch, J.J. Snyder: Wavemeters, Dye Lasers, 3rd edn., ed. by F.P. Schäfer, Topics Appl. Phys., Vol. 1 (Springer, Berlin, Heidelberg 1990)Google Scholar
  42. 9.42
    R. Castell, W. Demtröder, A. Fischer, R. Kullmer, H. Weickenmeier, K. Wikkert The accuracy of laser wavelength meters. Appl Phys. B 38, 1 (1985)Google Scholar
  43. 9.43
    M. Herscher: The spherical mirror Fabry-Perot interferometer. Appl. Opt. 7, 951 (1968)ADSGoogle Scholar
  44. 9.44
    J.U. White: Long optical paths of large aperture. J. Opt. Soc. Am. 32, 285 (1942)ADSGoogle Scholar
  45. 9.45
    J.U. White: Very long paths in air. J. Opt. Soc. Am. 66, 411 (1976)ADSGoogle Scholar
  46. 9.46
    G. Yale Eastman: The heat pipe. Sci. Am. 218, 38 (1968)Google Scholar
  47. 9.47
    C.R. Vidal, J. Cooper Heat pipe oven. A new well defined metal vapor device for spectroscopic measurements. J. Appl. Phys. 40, 3370 (1969)ADSGoogle Scholar
  48. 9.48
    H.-L. Chen: Applications of laser absorption spectroscopy, in [Ref.9.3, p.261]Google Scholar
  49. 9.49
    T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a cw dye laser to selective extinction. IEEE J. QE-8, 802 (1972)Google Scholar
  50. 9.50
    T.H. Harris: Laser intracavity-enhanced spectroscopy, in [Ref.9.76, p.343] V.M. Baev, T.P. Belikova, E.A. Sviridenkov, A.F. Suchkov: JETP 74, 1 (1978)Google Scholar
  51. 9.51
    DJ. Bradley, P. Ewart, J.V. Nicholas, J.R.D. Shaw: Excited state absorption spectroscopy of alkaline earths selectively pumped by tunable dye lasers. I. Barium arc spectra. J. Phys. B 6, 1594 (1973)ADSGoogle Scholar
  52. 9.52
    J.R. Rubbmark, S.A. Borgström, K. Bockasten: Absorption spectroscopy of laser-excited barium. J. Phys. B 10, 421 (1977)ADSGoogle Scholar
  53. 9.53
    M.E. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow: Identification of absorption lines by modulated lower-level population: Spectrum of Na. Contemp. Phys. 36, 671 (1976)Google Scholar
  54. 9.54
    A.L. Schawlow: Simplifying spectra by laser level labeling. Phys. Scr. 25, 333 (1982)ADSGoogle Scholar
  55. 9.55
    R. Teets, R. Feinberg, T.W. Hansch, A.L. Schawlow: Simplification of spectra by polarization labeling. Contemp. Phys. 37, 683 (1976)Google Scholar
  56. 9.56
    P. Esherick: Bound, even-parity J=0 and J=2 states of Sr. Phys. Rev. A15, 1920 (1977)ADSGoogle Scholar
  57. 9.57
    J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)ADSGoogle Scholar
  58. 9.58
    CJ. Sansonetti, K.-H. Weben Reference lines for dye-laser wavenumber calibration in the optogalvanic spectra of uranium and thorium. J. Opt. Soc. Am. 131, 361 (1984)Google Scholar
  59. 9.59
    O. Axner, I. Lindgren, I. Magnusson, H. Rubinsztein-Dunlop: Trace element determination in flames by laser-enhanced ionization spectrometry. Anal. Chem. 57, 773 (1985)Google Scholar
  60. 9.60
    J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionization techniques, in [Ref.9.26, p.337]Google Scholar
  61. 9.61
    J.A. Paisner, R.W. Solarz: Resonance photoionization spectroscopy, in [Ref.9.3, P.175]Google Scholar
  62. 9.62
    P. Camus (ed.): Optogalvanic Spectroscopy and its Applications. J. Physique Coll. C7, Suppl. no. 11, Tome 44 (1983)Google Scholar
  63. 9.63
    P. Hannaford: Spectroscopy with sputtered atoms. Contemp. Phys. 24, 251 (1983)ADSGoogle Scholar
  64. 9.64
    K.C. Smith, P.K. Schenck: Optogalvanic spectroscopy of a neon discharge. Chem. Phys. Lett. 55, 466 (1978)ADSGoogle Scholar
  65. 9.65
    V.S. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando 1987)Google Scholar
  66. 9.66
    J.C. Travis, G.C. Turk, J.R. DeVoe, P.K. Schenck, C.A. van Dijk: Progr. Anal. Atom. Spectr. 7, 199(1984)Google Scholar
  67. 9.67
    I. Magnusson, O. Axner, I. Lindgren, H. Rubinsztein-Dunlop: Laser-enhanced ionization detection of trace elements in a graphite furnace. Appl. Spectr. 40, 968 (1986) O. Axner, I. Magnusson, J. Petersson, S. Sjöström: Investigation of the multielement capability of laser-enhanced ionization spectrometry in flames for analysis of trace elements in water solution. Appi. Spectr. 41, 19 (1987)Google Scholar
  68. 9.68
    N. Omenetto: The impact of several atomic and molecular laser spectroscopic techniques for chemical analysis, in H. Medin, S. Svanberg (eds.): Laser Technology in Chemistry, Special issue, Appl. Phys. B46, No. 3 (1988)Google Scholar
  69. 9.69
    G.S. Hurst, M.G. Payne (eds.): Resonance Ionization Spectroscopy and its Applications 1984, Conf. Series Number 71 (The Institute of Physics, Bristol 1984) G.S. Hurst, C. Grey Morgan (eds.): Resonance Ionization Spectroscopy, Conf. Series Number 84 (The Institute of Physics, Bristol 1987)Google Scholar
  70. 9.70
    G.S. Hurst, M.G. Payne (eds.): Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, Bristol 1988)Google Scholar
  71. 9.71
    C.H. Chen, G.S. Hurst, M.G. Payne: Resonance ionization spectroscopy: Inert gas detection, in H.J. Beyer, H. Kleinpoppen (eds.): Progress in Atomic Spectroscopy, Pt.C (Plenum, New York 1984) p. 115Google Scholar
  72. 9.72
    G.S. Hurst, M.G. Payne, S.D. Kramer, C.H. Chen, R.C. Phillips, S.L. Allman, G.D. Alton, J.W.T. Dabbs, Rd. Willis, B.E. Lehman: Method for counting noble gas atoms with isotopic selectivity. Rep. Prog. Phys. 48, 1333 (1985)ADSGoogle Scholar
  73. V.S. Letokhov: Detecting individual atoms and molecules with lasers. Sci. Am. 259/3, 44 (1988)Google Scholar
  74. 9.73
    J.A. Gelbwachs (ed.): Laser Spectroscopy for Detection. Proc. SPIE Vol. 286 (SPIE, Washington 1981)Google Scholar
  75. 9.74
    R.A. Keller. Laser Based Ultrasensitive Spectroscopy and Detection. Proc. SPIE Vol. 426 (SPIE, Washington 1983)Google Scholar
  76. 9.75
    J.J. Snyder, R.A. Keller (eds.): Ultrasensitive Laser Spectroscopy Special issue, J. Opt. Soc. Am. B2, No 9 (1985)Google Scholar
  77. 9.76
    D. Kliger (ed.): Ultrasensitive Laser Spectroscopy (Academic Press, New York 1983)Google Scholar
  78. 9.77
    N. Omenetto (ed.): Analytical Laser Spectroscopy (Wiley, New York 1979)Google Scholar
  79. 9.78
    E.H. Piepmeier (ed.): Analytical Applications of Lasers (Wiley, New York 1986)Google Scholar
  80. 9.79
    V.S. Letokhov (ed.): Laser Analytical Spectrochemistry (Hilger, Bristol 1986)Google Scholar
  81. 9.80
    S. Svanberg: Fundamentals of atmospheric spectroscopy, in T. Lund (ed.): Surveillance of Environmental Pollution and Resources by Electromagnetic Waves (D. Reidel, Dordrecht 1978)Google Scholar
  82. 9.81
    L.B. Kreutzer: Laser optoacoustic spectroscopy. A new technique of gas analysis. Anal. Chem. 46, 239A (1974)Google Scholar
  83. 9.82
    A. Rosencwaig: Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)Google Scholar
  84. 9.83
    V. Letokhov, V. Zhaorov: Laser Opto-Acoustic Spectroscopy, Springer Ser. Opt. Sci., Vol. 37 (Springer, Berlin, Heidelberg 1986)Google Scholar
  85. 9.84
    A.C. Tarn: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)ADSGoogle Scholar
  86. 9.85
    P. Hess, J. Pelzl (eds.): Photoacoustics and Photothermal Phenomena, Springer Ser. Opt. Sci., Vol. 58 (Springer, Berlin, Heidelberg 1988)Google Scholar
  87. 9.86
    C.K.N. Patel, A.C. Tarn: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517 (1981)ADSGoogle Scholar
  88. 9.87
    S. Svanberg, P. Tsekeris, W. Happen Hyperfine structure studies of highly excited D and F levels in alkali atoms using a CW dye laser. Contemp. Phys. 30, 817 (1973) S. Svanberg, P. Tsekeris: Hyperfine-structure investigation of highly excited 2D levels in 87Rb and 133Cs using a cw tunable laser in a two-step excitation scheme. Rev. All, 1125 (1975)Google Scholar
  89. 9.88
    G. Belin, I. Lindgren, L. Holmgren, S. Svanberg: Hyperfine interaction, Zee-man and Stark effects for excited states in potassium. Phys. Scr. 12, 287 (1975)ADSGoogle Scholar
  90. 9.89
    G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in rubidium. Phys. Scr. 13, 351 (1976)ADSGoogle Scholar
  91. 9.90
    G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in cesium. Phys. Scr. 14, 39 (1976)ADSGoogle Scholar
  92. 9.91
    S. Svanberg: Measurement and calculation of excited alkali hyperfine and Stark parameters, in [Ref.9.21, p. 183]Google Scholar
  93. 9.92
    R. Neumann, F. Träger, G. zu Putlitz: Laser-microwave spectroscopy, in H.K. Beyer, H. Kleinpoppen (eds.): Progress in Atomic Spectroscopy, Part D (Plenum, New York 1987) p. 1 T.F. Gallagher. Radiofrequency spectroscopy of Rydberg atoms, in Progress in Atomic Spectroscopy, Pt.D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 12Google Scholar
  94. 9.93
    K. Fredriksson, S. Svanberg: Precision determination of the fine structure of the 4d state in sodium using level crossing spectroscopy. Phys. Lett. 53A, 61 (1975)ADSGoogle Scholar
  95. 9.94
    E. Matthias, R.A. Rosenberg, E.D. Poliakoff, M.G. White, S.-T. Lee, D.A. Shirley: Time resolved VUV spectroscopy using synchrotron radiation: Fluorescent lifetimes of atomic Kr and Xe. Chem. Phys. Lett. 52, 239 (1977) T. Möller, G. Zimmerer: Time-resolved spectroscopy with synchrotron radiation in the vacuum ultraviolet. Phys. Scr. T17, 177 (1987) R. Rigler, O. Kristensen, R. Roslund, P. Thyberg, K. Oba, M. Eriksson: Molecular structure and dynamics: Beamline for time resolved spectroscopy at the MAX synchrotron in Lund. Phys. Scr. T17, 204 (1987)Google Scholar
  96. 9.95
    G.H.C. New: The generation of ultrashort laser pulses. Rep. Prog. Phys. 46, 877 (1983) S. de Silvestri, P. Laporta, V. Magni: Generation and applications of femtosecond laser pulses. Europhys. News 17 (9), 105 (1986).Google Scholar
  97. 9.96
    T.F. Johnston, Jr: Tunable dye lasers, in Encyclopedia of Physical Science and Technology, Vol.14 (Academic, New York 1987)Google Scholar
  98. 9.97
    B. Couillaud, V. Fossati-Bellani: Modelocked lasers and ultrashort pulses. Lasers & Appl. (January 1985) pp.79–83 and (February 1985) pp.91-94Google Scholar
  99. 9.98
    W.H. Know, R.L. Fork, M.C. Downer, R.H. Stolen, C.V. Shank, J.A. Valdamis: Optical pulse compression to 8 fs at a 5 kHz repetition rate. Appl. Phys. Lett. 46, 1120(1985) R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank: Compression of optical pulses to six femtoseconds by using cubic phase compression. Opt. Lett. 12, 483Google Scholar
  100. 9.99
    P.B. Conies The correction for photon “pile-up” in the measurement of radiative lifetimes. J. Phys. E 1, 878 (1968)ADSGoogle Scholar
  101. 9.100
    M Gustavsson, H. Lundberg, L. Nilsson, S. Svanberg: Lifetime measurements for excited states of rare-earth atoms using pulse-modulation of a cw dye laser beam. J. Opt. Soc. Am. 69, 984 (1979) J. Carlsson: Accurate time-resolved laser spectroscopy on sodium and bismuth atoms. Z. Phys. D 9, 147 (1988).Google Scholar
  102. 9.101
    K Bhatia, P. Grafström, C. Levinson, H. Lundberg, L. Nilsson, S. Svanberg: Natural radiative lifetimes in the perturbed 6snd 1D2 sequence of barium. Z. Physik A 303, 1 (1981) T F Gallagher, W. Sandner, K.A. Safinya: Erobing configuration interaction ot the Ba 5d7d 1D2 state using radiofrequency spectroscopy and lifetime measurements. Phys. Rev. A 23, 2969 (1981) M Aymar R.-J. Champeau, C. Delsart, J.C. Kellen Lifetimes of Rydberg levels in the perturbed 6snd 1,3D2 series of barium I. J. Phys. B 14, 4489 (1981)Google Scholar
  103. 9.102
    S. Svanberg: Perturbations in Rydberg sequences probed by lifetime, Zeeman-effect and hyperfine structure measurements, in [Ref.9.23, p. 301]Google Scholar
  104. 9.103
    S. Letzring: Buying and using a streak camera. Lasers & Appl. (March 1983)Google Scholar
  105. 9.104
    S.L. Shapiro (ed.): Ultrashort Light Pulses, 2nd edn., Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg 1984). W. Kaiser (ed.): Ultrashort Laser Pulses and Applications, 2nd edn., Springer Ser. Opt. Sci., Vol.60 (Springer, Berlin, Heidelberg 1993)Google Scholar
  106. 9.105
    C.V. Shank, E. Ippen, S.L. Shapiro: Picosecond Phenomena, Spnnger Ser. Chem. Phys Vol.4 (Springer, Berlin, Heidelberg 1978)Google Scholar
  107. 9.106
    R.M. Hochstrasser, W. Kaiser, C.V. Shank: Picosecond Phenomena II, Springer Ser. Chem. Phys., Vol.14 (Springer, Berlin, Heidelberg 1980)Google Scholar
  108. 9.107
    K.L Eisenthal, R.M. Hochstrasser, W. Kaiser, A Lauberau (eds): Picosecond Phenomena Ill, Springer Ser. Chem. Phys., Vol.23 (Springer, Berlin, HeidelbergGoogle Scholar
  109. 9.108
    D. Auston, K. Eisenthal (eds.): Ultrafast Phenomena IV, Springer Ser. Chem. Phys., Vol. 38 (Springer, Berlin, Heidelberg 1984)Google Scholar
  110. 9.109
    A. Siegman, G. Fleming (eds.): Ultrafast Phenomena V, Spnnger Ser. Chem. Phys., Vol. 46 (Springer, Berlin, Heidelberg 1986)Google Scholar
  111. 9.110
    C De Michelis, M. Mattioli: Spectroscopy and impurity behaviur in fusion plasmas. Rep. Prog. Phys. 47, 1233 (1984) R.C. Islen Impurities in Tokomaks. Nuclear Fusion 24, 1599 (1984) 9 111 R.E. Imhof, F.H. Read: Measurements of lifetimes of atoms, molecules and ions. Rep. Prog. Phys. 40, 1 (1977).Google Scholar
  112. 9.112
    P Erman: Time resolved spectroscopy of small molecules, in Specialists Periodi-cal Reports, Molecular Spectroscopy, Vol.6, Ch.5 (The Chemical Society, London 1979) p. 174Google Scholar
  113. 9.113
    J.N. Dodd, G.W. Series: Time resolved fluorescence spectroscopy, in Progress in Atomic Spectroscopy, Pt.A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New W.L.WieseAtomic transition probabilities and lifetimes, in Progress in Atomic Spectroscopy, Pt.B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 1101Google Scholar
  114. 9.114
    M.C.E, Huber, R.J. Sandeman: The measurement of oscillator strengths. Rep. Prog. Phys. 49, 397 (1986)ADSGoogle Scholar
  115. 9.115
    O. Poulsen, J.L. Hall: Spectroscopic investigation in 209Bi I using tunable-cw-dye-laser spectroscopy. Phys. Rev. A 18, 1089 (1978)ADSGoogle Scholar
  116. 9.116
    S. Svanberg: Natural radiative lifetimes of some excited Bi I levels belonging to the 6p27s and the 6p26d configurations measured by the Hanle method. Phys. Scr. 5, 73 (1972)ADSGoogle Scholar
  117. 9.117
    H.J. Andrä, A. Gaupp, W. Wittmann: New method for precision lifetime measurements by laser excitation of fast-moving atoms. Contemp. Phys. 31, 501 (1973)Google Scholar
  118. 9.118
    P. Erman, J. Brzozowski, B. Sigfridsson: Gas excitations using high-frequency deflected electron beams: A convenient method for determinations of atomic and molecular lifetimes. Nucl. Instr. Methods 110, 471 (1973)Google Scholar
  119. 9.119
    P. Erman: High resolution measurements of atomic and molecular lifetimes using the high-frequency deflection technique. Phys. Scr. 11, 65 (1975) P. Erman: Astrophysical applications of time-resolved molecular spectroscopy. Phys. Scr. 20, 575 (1979); Studies of perturbations using time resolved techniques. Phys. Scr. 25, 365 (1982)Google Scholar
  120. 9.120
    J. Brzozowski, P. Bunker, N. Elander, P. Erman: Predissociation effects in the A, B, and C states of CN and the interstellar formation rate of CH via inverse predissociation. Astrophys. J. 207, 414 (1976)ADSGoogle Scholar
  121. 9.121
    J.K. Link: Measurement of the radiative lifetimes of the first excited states of Na, K, Rb, and Cs by means of the phase-shift method. J. Opt. Soc. Am. 56, 1195(1966) P.T. Cunningham, J.K. Link: Measurement of lifetimes of excited states of Na, Tl, In, Ga, Cu, Ag, Pb, and Bi by the phase-shift method. J. Opt. Soc. Am. 57, 1000 (1967) L. Armstrong, Jr., S. Ferneuille: Theoretical analysis of the phase shift measurement of lifetimes using monochromatic light. J. Phys. B 8, 546 (1975)Google Scholar
  122. 9.122
    C.H. Corliss, W.R. Bozman: Experimental transition probabilities for spectral lines of seventy elements. NBS Monograph 53 (National Bureau of Standards, Wash., D.C. 1962)Google Scholar
  123. 9.123
    W. Marlow: Hakenmethode. Appl Opt. 6, 1715 (1967)ADSGoogle Scholar
  124. 9.124
    N.P. Penkin: Experimental determination of electronic transition probabilities and the lifetimes of the excited atomic and ionic states, in Atomic Physics 6, ed. by R. Damburg (Plenum, New York 1979) p.33Google Scholar
  125. 9.125
    W.A. van Wijngaarden, K.D. Bonin, W. Happen Inverse hook method for measuring oscillator strengths for transitions between excited atomic states. Hyperf. Interact. 38, 471 (1987)ADSGoogle Scholar
  126. 9.126
    S. Svanberg: Atomic spectroscopy by resonance scattering. Phil. Trans. Roy. Soc. (London) A293, 215 (1979)ADSGoogle Scholar
  127. 9.127
    J.N. Dodd, G.W. Series: Time-resolved fluorescence spectroscopy, in Progress in Atomic Spectroscopy, Pt.A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978) p.639Google Scholar
  128. 9.128
    S. Haroche: Quantum beats and time-resolved fluorescence spectroscopy, in [Ref.9.15, p.253]Google Scholar
  129. 9.129
    P. Grundevik, H. Lundberg, A.-M. Martensson, K. Nyström, S. Svanberg: Hyperfine-structure study in the P sequence of 23Na using quantum-beat spectroscopy. J. Phys. B 12, 2645 (1979)ADSGoogle Scholar
  130. 9.130
    G. Jönsson, C. Levinson, I. Lindgren, A. Persson, C.G. Wahlström: Experimental and theoretical studies of the 4s2 np 2P sequence in neutral gallium. Z. Phys. A 322, 351 (1985)ADSGoogle Scholar
  131. 9.131
    J. Bengtsson, J. Larsson, S. Svanberg, C.-G. Wahlström: Hyperf ine-structure study of the 3dl05p 2P3/2 level of neutral copper using pulsed level-crossing spectroscopy at short wavelengths. Phys. Rev. A 41, 233 (1990) J. Bengtsson, J. Larsson, S. Svanberg, C.G. Wahlström: High-resolution pulsed laser spectroscopy in the UV/VUV spectral region. [Ref.9.27, p.86] S. Svanberg: High-resolution laser spectroscopy in the UV/VUV spectral region, in Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York 1990)Google Scholar
  132. 9.132
    D.P. O’Brien, P. Meystre, H. Walther: Subnatural iinewidths in atomic spectroscopy, in Advanced Atomic and Molecular Physics, Vol.21, ed. by D.R. Bates, B. Bederson (Academic, Orlando 1985) H. Figger, H. Walther: Optical resolution beyond the natural linewidth: A level-crossing experiment on the 3 2P3/2 level of sodium using a tunable dye laser. Z. Phys. 267, 1 (1974)Google Scholar
  133. 9.133
    P. Schenk, R.C. Hilborn, H. Metcalf: Time-resolved fluorescence from Ba and Ca excited by a pulsed tunable dye laser. Contemp. Phys. 31, 189 (1974)Google Scholar
  134. 9.134
    K. Fredriksson, H. Lundberg, S. Svanberg: Fine-and hyperfine structure investigation in the 5 D — n F series of cesium. Phys. Rev. A 21, 241 (1980)ADSGoogle Scholar
  135. 9.135
    K. Fredriksson, L. Nilsson, S. Svanberg: Stark interaction for alkali atoms (unpublished report, 1980)Google Scholar
  136. 9.136
    M.A. Zaki Ewiss, W. Hogervorst, W. Vassen, B.H. Post: The Stark effect in the 6snf Rydberg series of barium. Z. Phys. A 322, 211 (1985)ADSGoogle Scholar
  137. 9.137
    F. Touchard, J.M. Serre, S. Büttgenbach, P. Guimbal, R. Klapisch, M. de Saint Simon, C. Thibault, H.T. Duong, P. Juncar, S. Liberman, J. Pinard, J.-L. Vialle: Electric quadrupole moments and isotopic shifts of radioactive sodium isotopes. Phys. Rev C 25, 2756 (1982)ADSGoogle Scholar
  138. 9.138
    S. Liberman: High resolution laser spectroscopy of radioactive atoms, in [Ref.9.26, p. 162]Google Scholar
  139. 9.139
    H.T. Duong, P. Juncar, S. Liberman et al.: First observation of the blue optical lines of francium. Europhys. Lett. 3, 175 (1987) S.V. Andreev, V.S. Letokhov, V. 1. Mishin: Laser resonance photoionization spectroscopy of Rydberg levels in FR. Phys. Rev. Lett. 59, 1274 (1987)Google Scholar
  140. 9.140
    W. Ertmer, B. Hofen Zero-field hyperfine structure measurements of meta-stable states 3d2 4s 4F3/2,9/2 of 45Sc using laser fluorescence atomic-beam-magnetic-resonance technique. Z. Phys. A 276, 9 (1976) S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laser-fluorescence molecular-beam-resonance technique. Contemp. Phys. 35, 785 (1975)Google Scholar
  141. 9.141
    P. Grundevik, M. Gustavsson, I. Lindgren, G. Olsson, L. Robertsson, A. Rosen, S. Svanberg: Precision method for hyperfine structure studies in low-abundance isotopes: The quadrupole moment of 43Ca. Contemp. Phys. 42, 1528 (1979)Google Scholar
  142. 9.142
    W.H. Wing, G.A. Ruff, W.E. Lamb, J.J. Spezeski: Observation of the infrared spectrum of the hydrogen molecular ion HD+. Contemp. Phys. 36, 1488 (1976)Google Scholar
  143. 9.143
    S.L. Kaufmann: High resolution laser spectroscopy in fast beams. Opt. Commun. 17, 309 (1976)ADSGoogle Scholar
  144. 9.144
    E.W. Otten: Hyperfine and isotope shift measurements, in Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977)Google Scholar
  145. 9.145
    P. Jaquinot, R. Klapisch: Hyperfine spectroscopy of radioactive atoms. Rep. Prog. Phys. 42, 773 (1979)ADSGoogle Scholar
  146. 9.146
    R. Neugart, S.L. Kaufman, W. Klempt, G. Moruzzi: High resolution spectroscopy in fast beams, in [Ref.9.21, p.446] R. Neugart Collinear fast-beam laser spectroscopy, in Progress in Atomic Spectroscopy, Pt.D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p.75Google Scholar
  147. 9.147
    H.J. Kluge: Optical spectroscopy of shortlived isotopes, in Progress in Atomic Spectroscopy, Pt.B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p.727 HJ. Kluge: Hyperf. Interac. 24–26, 69 (1985)Google Scholar
  148. 9.148
    H.H Stroke: Isotopic shifts, in I. Lindgren, A. Rosen, S. Svanberg (eds.): Atomic Physics 8 (Plenum, New York 1983) p. 509Google Scholar
  149. 9.149
    S. Svanberg: Laser spectroscopy applied to the study of hyperfine interactions. Hyperf. Interact. 15/16, 111 ( 1983)ADSGoogle Scholar
  150. 9.150
    P.H. Lee, M.L. Skolnick: Saturated neon absorption inside a 6328 A laser. Appl. Phys. Lett. 10, 303 (1967)ADSGoogle Scholar
  151. 9.151
    W.E. Lamb, Jr.: Theory of the optical laser. Phys. Rev. 134, A1429 (1964)ADSGoogle Scholar
  152. 9.152
    W.R. Rowley, B.W. Jolliffe, K.C. Schotton, A.J. Wallard, P.T. Woods: Laser wavelength measurements and the speed of light. Opt. Quant. Electr. 8, 1 (1976) J.L. Hall: Stabilized lasers and precision measurements. Science 202, 147 (1978)Google Scholar
  153. 9.153
    K.M. Evenson, D.A. Jennings, F.R. Peterson, J.S. Wells: Laser frequency measurements: A review, limitations, extension to 197 THz (1.5 mm), in [Ref.9.21,p.57] D.A. Jennings, F.R. Petersen, K.M. Evenson: Direct frequency measurement ot the 260 THz (1.15μ) 20Ne lasen And beyond, in [Ref.9.22, p.31]Google Scholar
  154. 9.154
    D.A. Jennings, C.R. Pollock, F.R. Petersen, R.E. Drullinger, K.M. Evenson, J.S. Wells: Direct frequency measurement of the I2 stabilized He-Ne 473 THz (633 nm) laser. Opt. Lett. 8 136 (1983)ADSGoogle Scholar
  155. 9.155
    R.G. DeVoe, R.G. Brewen Laser frequency division and frequency stabilization. Phys. Rev. A 30, 2827 (1984) R.G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, R.G. Brewer: Precision optical-frequency difference measurements. Phys. Rev. A 37, 1802 (1988)Google Scholar
  156. 9.156
    T. Wilkie: Time to remeasure the metre. New Scientist (Oct. 27, 1983)Google Scholar
  157. 9.157
    Documents concerning the new definition of the metre. Metrologia 19, 163 (1984)Google Scholar
  158. 9.158
    M.D. Levenson, A.L. Schawlow: Hyperfine interactions in molecular iodine. Phys. Rev. A 6, 10 (1972)ADSGoogle Scholar
  159. 9.159
    T.W. Hänseh, L.S. Shahin, A.L. Schawlow: High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser. Contemp. Phys. 27, 707 (1971)Google Scholar
  160. 9.160
    C. Bordé: Spectroscopic d’absorption saturée de diverses molécules au moyen des lasers a gas carbonique et ä prooxyde d’azote. C. R. Acad. Sci. B 271, 371 (1970).Google Scholar
  161. 9.161
    S. Svanberg, G.-Y. Yan, T.P. Duffey, A.L. Schawlow: High-contrast Doppler-free transmission spectroscopy. Opt. Lett. 11, 138 (1986) S. Svanberg, G.-Y. Yan, T. P. Duffey, W.-M. Du, T.W. Hansen, A.L. Schawlow: Saturation spectroscopy for optically thick atomic samples. J. Opt. Soc. Am. B 4, 462 (1987)Google Scholar
  162. 9.162
    C. Wieman, T.W. Hänsen: Doppler-free laser polarization spectroscopy. Contemp. Phys. 36, 1170(1976)Google Scholar
  163. 9.163
    T.W. Hänsch, L.S. Shahin, A.L. Schawlow: Optical resolution of the Lamb shift in atomic hydrogen. Nature 235, 56 (1972) T.W. Hänsch, M.H. Nayfeh, S.A. Lee, S.M. Curry, I.S. Shahin: Precision measurement of the Rydberg constant by laser saturation spectroscopy of the Balmer-α line in hydrogen and deuterium. Contemp. Phys. 32, 1336 (1974)Google Scholar
  164. 9.164
    J.E.M. Goldsmith, E.W. Weber, T.W. Hänsch: New measurement of the Rydberg constant using polarization spectroscopy of H. Phys. Rev. Lett. 41, 1525 (1978)ADSGoogle Scholar
  165. 9.165
    P. Zhao, W. Lichten, J.C. Bergquist, H.P. Layer Remeasurement of the Rydberg constant. Phys. Rev. A34, 5138 (1986)ADSGoogle Scholar
  166. 9.166
    P. Zhao, W. Lichten, H. Layer, J. Bergquist New value for the Rydberg constant from the hydrogen Balmer-γ transition. Contemp. Phys. 58, 1293 (1987)Google Scholar
  167. 9.167
    F. Biraben, J.C. Garreau, L. Julien: Determination of the Rydberg constant by Doppler-free two-photon spectroscopy of hydrogen Rydberg states. Europhys. Lett. 2, 925 (1986); and in [Ref.9.26, p. 8]ADSGoogle Scholar
  168. 9.168
    T.W. Hänsch, A.L. Schawlow, G.W. Series: The spectrum of atomic hydrogen. Sci. Am. 3 240/3 72 (1979) G.W. Series (ed.): The Spectrum of Atomic Hydrogen: Advances (World Scientific, Singapore 1988) G.F. Bassani, M. Inguscio, T.W. Hänsen (eds.): The Hydrogen Atom (Springer, Berlin, Heidelberg 1989)Google Scholar
  169. 9.169
    A.I. Ferguson, J.M. Tolchard: Laser spectroscopy of atomic hydrogen. Contemp. Phys. 28, 383 (1987)ADSGoogle Scholar
  170. 9.170
    H.R. Schlossberg, A. Javan: Saturation behaviour of a Doppler-broadened transition involving levels with closely spaced structure. Phys. Rev. 150, 267 (1966)ADSGoogle Scholar
  171. 9.171
    T.W. Hänsen, P. Toschek: Theory of a three-level gas laser amplifier. Z. Physik 236, 213 (1970)ADSGoogle Scholar
  172. 9.172
    M.A. Bouchiat, L. Pottier: An atomic preference between left and right. Sci. Am. 250/6, 76 (1984) M.-A. Bouchiat, L. Pottien Optical experiments and weak interactions. Nature 234, 1203 (1986).Google Scholar
  173. 9.173
    E.D. Commins: Parity violation in atoms, in [Ref.9.26, p.43]Google Scholar
  174. 9.174
    T.P. Emmons, E.N. Fortson: Parity conservation in atoms, in Progress in Atomic Spectroscopy, Pt.D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p.237Google Scholar
  175. 9.175
    F.V. Kowalski, W.T. Hill, A.L. Schawlow: Saturated interference spectroscopy. Opt. Lett. 2, 112(1978)ADSGoogle Scholar
  176. 9.176
    R. Schieden Interferometric nonlinear spectroscopy. Opt. Commun. 26, 113 (1978)ADSGoogle Scholar
  177. 9.177
    M.S. Sorem, A.L. Schawlow: Saturation spectroscopy in molecular iodine by in-termodulated fluorescence. Opt. Commun. 5, 148 (1972)ADSGoogle Scholar
  178. 9.178
    J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow: Doppler-free intermodulated optogalvanic spectroscopy. Contemp. Phys. 42, 1046 (1979)Google Scholar
  179. 9.179
    D.R. Lyons, A.L. Schawlow, G.-Y. Yan: Doppler-free radiofrequency optogalvanic spectroscopy. Opt. Commun. 38, 35 (1981)ADSGoogle Scholar
  180. 9.180
    E.E. Marinero, M. Stuke: Doppler-free optoacoustic spectroscopy. Opt. Commun. 30, 349 (1979)ADSGoogle Scholar
  181. 9.181
    T.P. Duffey, D. Kämmen, A.L. Schawlow, S. Svanberg, H.-R. Xia, G.-G. Xiao, G.-Y. Yan: Laser spectroscopy using beam overlap modulation. Opt. Lett. 10, 597 (1986)ADSGoogle Scholar
  182. 9.182
    T.W. Hänsen, D.R. Lyons, A.L. Schawlow, A. Siegel, Z.-Y. Wang, G.-Y. Yan: Polarization intermodulated excitation (POLINEX) spectroscopy of helium and neon. Opt. Commun. 37, 87 (1981)ADSGoogle Scholar
  183. 9.183
    G.C. Bjorklund: Frequency modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15 (1980) M. Gehrtz, G.C. Bjorklund, E.A. Whittaken Quantum-limited laser frequency-modulation spectroscopy. J. Opt. Soc. Am. B2, 1510 (1985)Google Scholar
  184. 9.184
    N.H. Tran, R Kachru, P. Pillet, H.B. van Linden van dem Heu veil, T.F. Gallagher, J.P. Watjen: Frequency-modulation spectroscopy with a pulsed dye lasen Experimental investigations of sensitivity and useful features. Appl. Opt. 23, 1353 (1984); Appl. Opt. 25, 510 (1986) N.H. Tran, T.F. Gallagher, J.P. Watjen, G.R. Janik, C.B. Carlisle: High efficiency resonant cavity microwave optical modulator. Appl. Opt. 24, 4282 (1984)ADSGoogle Scholar
  185. 9.185
    J. Bialas, R. Blatt, W. Neuhauser, P. Toschek: Ultrasensitive detection of light absorption by a few ions. Opt. Commun. 59, 27 (1986)ADSGoogle Scholar
  186. 9.186
    DJ. Wineland, W.M. Itano, J.C. Bergquist: Absorption spectroscopy at the limit Detection of a single atom. Opt. Lett. 12, 389 (1987)ADSGoogle Scholar
  187. 9.187
    M. Goeppert-Mayer: Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 9, 273 (1931)Google Scholar
  188. 9.188
    L.S. Vasilenko, V.P. Chebotayev, A.V. Shishaev: Line shape of a two-photon absorption in a standing-wave field in a gas. JETP Lett. 12, 113 (1970)ADSGoogle Scholar
  189. 9.189
    F. Biraben, B. Cagnac, G. Grynberg: Experimental evidence of two-photon transition without Doppler broadening. Contemp. Phys. 32, 643 (1974)Google Scholar
  190. 9.190
    G. Grynberg, B. Cagnac: Doppler-free multiphoton spectroscopy. Rep. Prog. Phys. 40, 791 (1977) N. Bloembergen, M.D. Levenson: Dopplerfree two-photon absorption spectroscopy. Contemp. Phys. 31, 645 (1974)Google Scholar
  191. 9.191
    T.W. Hansch, K.C. Harvey, G. Meisel, A.L. Schawlow: Two-photon spectroscopy of Na 3s-4d without Doppler broadening using a cw dye laser. Opt. Commun. 11,50(1974)ADSGoogle Scholar
  192. 9.192
    H. Rinneberg, J. Neukammer, G. Jönsson, H. Hieronymus, A. König, K. Vietzke: High-n Rydberg atoms and external fields. Contemp. Phys. 55, 382 (1985) J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hieronymus, M. Kohi, H.-J. Grabka: Spectroscopy of Rydberg atoms at n ≃ 500: Observation of quasi-Landau resonances in low magnetic fields. Contemp. Phys. 59, 2947 (1987)Google Scholar
  193. 9.193
    B.P. Stoicheff, E. Wineberger: Doppler-free two-photon absorption spectrum of rubidium. Can. J. Phys. 57, 2143 (1979)ADSGoogle Scholar
  194. 9.194
    C.-J. Lorenzen, K. Niemax, L.R. Pendrill: Precise measurements of 39K nS and nD energy levels with an evacuated wavemeter. Opt. Commun. 39, 370 (1981)ADSGoogle Scholar
  195. 9.195
    K.-H. Weber, C.J. Sansonetti: Accurate energies of nS, nP, nF and nG levels of neutral cesium. Phys. Rev. A35, 4650 (1987)ADSGoogle Scholar
  196. 9.196
    MJ. Seaton: Quantum defect theory. Rep. Progr. Phys. 46, 167 (1983)ADSGoogle Scholar
  197. 9.197
    E. Matthias, H. Rinneberg, R. Beigang, A. Timmermann, J. Neukammer, K. Lücke: Hyperfine structure and isotope shifts in alkaline earth atoms, in Atomic Physics 8, ed. by I. Lindgren, A. Rosén, S. Svanberg (Plenum, New York 1983) p.543Google Scholar
  198. 9.198
    H. Rinneberg: Rydberg series of two-electron systems studied by hyperfine interactions, in Progress in Atomic Spectroscopy, Pt.D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 157Google Scholar
  199. 9.199
    M. Aymar: Rydberg series of alkaline-earth atoms Ca through Ba. The interpla-y of laser spectroscopy and multi-channel quantum defect theory. Phys. Repts. 110, 163(1984)ADSGoogle Scholar
  200. 9.200
    W. Hogervorst Laser spectroscopy of Rydberg states of two-electron atoms. Comments At. Mol. Phys. 13, 69 (1983)Google Scholar
  201. 9.201
    C. Wieman, T.W. Hänsen: Precision measurement of the IS Lamb shift and the IS — 2S isotope shift of hydrogen and deuterium. Phys. Rev. A 22, 192 (1980)ADSGoogle Scholar
  202. 9.202
    E.A. Hildum, U. Boesl, D.H. Mclntyre, R.G. Beausoleil, T.W. Hansen: Measurements of the Is-2s frequency in atomic hydrogen. Contemp. Phys. 56, 576 (1986)Google Scholar
  203. 9.203
    R.G. Beausoleil, D.H. Mclntyre, C.J. Foot, E.A. Hildum, B. Couillaud, T.W. Hansen: Continous wave measurement of the IS Lamb shift in atomic hydrogen. Phys. Rev. A35, 4878 (1987); ibid A 39, 4591 (1989) C. Zimmermann, R. Kallenback, T.W. Hansen: High-resolution spectroscopy of the hydrogen ls-2s transition in an atomic beam. Contemp. Phys. 65, 571 (1990)Google Scholar
  204. 9.204
    J. Cariou, P. Luc: Atlas du Spectre dAbsorption de la Molécule de Tellure (Laboratoire Aime’ Cotton, CNRS II, Orsay 1980)Google Scholar
  205. 9.205
    S. Gersternkorn, P. Luc: Atlas du Spectre dAbsorption de la Molécule dIode 14800 — 20000 cm-1 (Editions du CNRS, Paris 1978)Google Scholar
  206. 9.206
    CJ. Foot, B. Couillaud, R.G. Beausoleil, T.W. Hänsch: Continous two-photon spectroscopy of hydrogen Is — 2s. Contemp. Phys. 54, 1913 (1985)Google Scholar
  207. 9.207
    M.G. Boshier, P.E.G. Baird, C.J. Foot, E.A. Hinds, M.D. Plimmer, D.N. Stacey, J.B. Swan, D.A. Tate, D.M. Warrington, G.K. Woodgate: Precision cw laser spectroscopy of hydrogen and deuterium, in [Ref.9.26, p. 18]Google Scholar
  208. 9.208
    T.W. Hänsch, R.G. Beausoleil, C.J. Foot, E.A. Hildum, D.H. Mclntyre: The hydrogen atom in a new light, in Methods in Laser Spectroscopy, ed. by Y. Prior (Plenum, New York 1986)Google Scholar
  209. 9.209
    P. Zhao, W. Lichten, H.P. Layer, J.C. Bergquist: Absolute wavelength measurements and fundamental atomic physics, in [Ref.9.26, p. 12]Google Scholar
  210. 9.210
    M.M. Salour, C. Cohen-Tannoudji: Observation of Ramsey’s interference fringes in the profile of Doppier-free two-photon resonances. Contemp. Phys. 38, 757 (1977)Google Scholar
  211. 9.211
    R. Teets, J. Eckstein, T.W. Hänsch: Coherent two-photon excitation by multiple light pulses. Contemp. Phys. 38, 760 (1977)Google Scholar
  212. 9.212
    J.C. Bergquist, S.A. Lee, J.L. Hall: Saturated absorption with spatially separated laser fields: Observation of optical “Ramsey” fringes. Contemp. Phys. 38, 159 (1977); and in [Ref.9.21, p. 142]Google Scholar
  213. 9.213
    R.G. Beausoleil, T.W. Hänsch: Two-photon optical Ramsey spectroscopy of freely falling atoms. Opt. Lett. 10, 547 (1985) R.G. Beausoleil, T.W. Hänsch: Ultra-high-resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661 (1986) M.A. Kasevich, E. Riis, S. Chu, R.G. DeVoe: RF spectroscopy in an atomic fountain. Contemp. Phys. 63, 612 (1989)Google Scholar
  214. 9.214
    J. Prodan, A. Migdal, W.D. Phillips, I. So, H. Metcalf, J. Dalibard: Stopping atoms with laser light. Contemp. Phys. 54, 992 (1985) W. Phillips, J. Prodan, H. Metcalf: Laser cooling and electromagnetic trapping of neutral atoms. J. Opt. Soc. Am. B 2, 1751 (1985) H. Metcalf, W.D. Phillips: Laser cooling of atomic beams: Comments. At. Mol. Phys. 16, 79 (1985).Google Scholar
  215. 9.215
    W. Ertmer, R. Blatt, J.L. Hall, M. Zhu: Laser manipulation of atomic velocities: Demonstration of stopped atoms and velocity reversal. Contemp. Phys. 54, 996 (1985)Google Scholar
  216. 9.216
    T.W. Hänsch, A.L. Schawlow: Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)ADSGoogle Scholar
  217. 9.217
    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt: Localized visible Ba+mono-ion oscillator. Phys. Rev. A 22, 1137 (1980)ADSGoogle Scholar
  218. 9.218
    F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther. Observation of a phase transition of stored laser-cooled ions. Contemp. Phys. 59, 2931 (1987); and Phys. Blätter 44, 12 (1988); Nature 334, 309 (1988) D.J. Wineland, J.C. Bergquist, Wayne M. Itano, J.J. Bollinger, C.H. Manney: Atomic-ion Coulomb cluster in an ion trap. Contemp. Phys. 59, 2935 (1987) J. Hoffnagle, R.V. DeVoe, L. Reyna, R.G. Brewer: Order-chaos transition of two trapped ions. Contemp. Phys. 61, 255 (1988) R.G. Brewer, J. Hoffnagle, R.G. DeVoe, L. Reyna, W. Henshaw: Collision-induced two-ion chaos. Nature 344, 305 (1990)Google Scholar
  219. 9.219
    A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf: First observation of magnetically trapped neutral atoms. Contemp. Phys. 54, 2596 (1985) V.S. Bagnato, G.P. Lafyatis, A.G. Martin, E.L. Raab, R.N. Ahmad-Bitar, D.E. Pritchard: Continous stopping and trapping of neutral atoms. Contemp. Phys. 58, 2194 (1987)Google Scholar
  220. 9.220
    S. Chu, L. Hoilberg, J.E. Bjorkholm, A. Cable, A. Ashkin: Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett 55, 48 (1985) S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable: Experimental observation of optically trapped atoms. Contemp. Phys. 57, 314 (1986) S. Chu, M.G. Prentiss, A.E. Cable, J.E. Bjorkholm: Laser cooling and trapping of atoms, in [Ref.9.26, p.58] P.D. Lett, R.N. Walls, Ch. I. Westbrook, W.D. Phillips, P.L. Gould, H.J. Met-calf: Observation of atoms laser cooled below the Doppler limit. Contemp. Phys. 61, 169 (1988)Google Scholar
  221. 9.221
    A. Bárány, A. Kerek, M. Larsson, S. Mannervik, L.-O. Norlin (eds.): Workshop and Symposium on the Physics of Low-Energy Stored and Trapped Particles. Phys. Scripta T 22, 1 (1988)Google Scholar
  222. 9.222
    P. Meystre, S. Stenholm (eds.): The Mechanical Effects of Light. J. Opt. Soc Am. B 2, 1706–1860 (1985) (special issue) S. Stenholm: Light forces put a handle on the atom: To cool and trap atoms by laser light. Contemp. Phys. 29, 105 (1988)Google Scholar
  223. 9.223
    V.G. Minogin, V.S. Letokhov: Laser Light Pressure on Atoms (Harwood, London 1987)Google Scholar
  224. 9.224
    W.D. Phillips, HJ. Metcalf: Cooling and trapping of atoms. Sci. Am. 256/3, 36 (1987) P.L. Gould, P.D. Lett, W.D. Phillips: New measurements with optical molasses, in [Ref.9.26, p.64]Google Scholar
  225. 9.225
    DJ. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger: Trapped Ions and Laser Cooling, NBS Technical Note 1086 (NBS, Washington, DC 1985)Google Scholar
  226. 9.226
    DJ. Wineland, W.M. Itano, R.S. VanDyck, Jr.: High-resolution spectroscopy of stored ions, in Advances in Atomic and Molecular Physics, Vol.19, ed. by D.R. Bates, B. Bederson (Academic, New York 1983)Google Scholar
  227. 9.227
    DJ. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.D. Prestige: Spectroscopy of stored ions, in Atomic Physics 9, ed. by R.S. Van Dyck, Jr., E.N. Fortson ( World Scientific, Singapore 1985) p.3Google Scholar
  228. 9.228
    H.G. Dehmelt Proposed l014 Δυ>υ laser fluorescence spectroscopy on Tl+mono-ion oscillator II. Bull. Am. Phys. Soc. 20, 60 (1975)Google Scholar
  229. 9.229
    Th. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek: Observation of quantum jumps. Contemp. Phys. 57, 1696 (1986); See also Phys. Scr. T 22, 129 (1988); and [Ref.9.26, p. 121]Google Scholar
  230. 9.230
    J.E. Bergquist, R.G. Hulet, W. M. Itano, DJ. Wineland: Observation of quantum jumps in a single atom. Contemp. Phys. 57, 1699 (1986); See also Phys. Scripta T22, 79 (1988) and [Ref.9.26, p. 1 17]Google Scholar
  231. 9.231
    W. Nagourney, J. Sandberg, H. Dehmelt Shelved optical electron amplifier: Observation of quantum jumps. Contemp. Phys. 56, 2797 (1986); see also [Ref.9.26, p. 114] W. Nagourney: The mono-ion oscillator An approach to an ideal atomic spectrometer. Comments At. Mol. Phys. 21, 321 (1988)Google Scholar
  232. 9.232
    J.C. Bergquist, F. Diedrich, W.M. Itano, D.J. Wineland: Hg+ single ion spectroscopy, in[Ref.9.27,p.274]Google Scholar
  233. 9.233
    V. 1. Balykin, V.S. Letokhov, Yu. B. Ovchinnikov, A.I. Sidorov: Focusing of an atomic beam and imaging of atomic sources by means of a laser lens based on resonance-radiation pressure. J. Mod. Opt. 35, 17 (1988) V. 1. Balykin, V.S. Letokhov, V.G. Minogin: Laser control of the motion of neutral atoms and optical atomic traps. Phys. Scr. T 22, 119 (1988)Google Scholar
  234. 9.234
    K. Cloppenburg, G. Hennig, A. Mihm, H. Wallis, W. Ertmer: Optical elements for manipulating atoms, in [Ref.9.26], p.87]Google Scholar
  235. 9.235
    S.N. Atutov, S.P. Podjachev, A.M. Shalagin: Diffusion pulling of Na vapor into the light beam. Opt. Commun. 57, 236 (1986)ADSGoogle Scholar
  236. 9.236
    Kh. Gel’mukhanov, A.M. Shalagin: Sov. Phys. — JETP 51, 839 (1980)ADSGoogle Scholar
  237. 9.237
    H.G.C. Werij, J.P. Woerdman, J.J.M. Beenakker, I. Kuscer: Demonstration of a semipermeable optical piston. Contemp. Phys. 52, 2237 (1984) G. Nienhuis: Theory of light-induced drift and the optical piston. Phys. Rev. A 31, 1636(1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Sune Svanberg
    • 1
  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations