Immunobiology of Xenografting in Rodents

  • F. T. Thomas
  • W. Marchman
  • A. Carobbi
  • R. DeMasi
  • D. Araneda
  • T. Patselas
  • E. Larkin
  • K. Pittman
  • M. Alqaisi
  • C. Haisch
  • J. M. Thomas


Rodents have always been favored species for laboratory research. The animals are inexpensive, their lodging and care are simple and cost-effective, and they can be bred in a well-controlled environment to develop pure strains with known histocompatibihty. Their use in organ transplantation research has previously been limited by their small size. Recently, the development of microsurgery has permitted the performance of a large number of whole-organ grafts in rodents, including kidney, pancreas, spleen, hver, lung, and heart grafts. The utility of rodents in skin grafting is legendary. One of the most useful papers on skin grafting technique was published by Billingham over 40 years ago using rodents and remains a recommended up-to-date reference on experimental skin grafting [1]. Perhaps the most important factor in the utility of these animals is the ability to perform large numbers of solid-organ grafts in a cost-effective manner consistent with modern concerns for animal welfare.


Graft Survival Skin Graft Lymphokine Activate Killer Lymphokine Activate Killer Cell Hyperacute Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingham, R.E., Medawar, P.B. Free skin grafting in mammals. J. Exper. Biol. 28, 385, 1951.Google Scholar
  2. 2.
    Thomas, F.T., DeMasi, R.J., Daniel, H., Araneda, D., Hsu, S., Moon, D., Thomas, J.M. Comparative immunosuppression for xenografting. In:Xenograft 25. Hardy, Mark A. (ed.), Elsevier Science Publishers, Amsterdam, 1989, p. 55.Google Scholar
  3. 3.
    Thomas, F.T., Thomas, J.M., Ganghoff, O., Gross, U. Mechanisms of cell-mediated rejection. In: Kidney Transplant Rejection. Wilhams, G.M., Burdick, J.F. and Solez, K. (eds.) Marceli Dekker, Inc., New York and Basel, In press.Google Scholar
  4. 4.
    Hsu, S., Daniel, H., Thomas, J.M., Thomas, F.T. Synergism of FK-506 and rabbit antithymocyte globulin (RATG) in prolongation of xenografts (XG). Surg. Forum. 39,374, 1988.Google Scholar
  5. 5.
    Thomas, F.T., DeMasi, R., Araneda, D., Marchman, W., Alqaisi, M., Larkin, E., Dabney, L., Condie, R., Thomas, J.M. Comparative efficacy of immunosuppressive drugs in xenografting. Transplant. Proc. 22,1083, 1990.PubMedGoogle Scholar
  6. 6.
    DeMasi, R., Alqaisi, M., Araneda, D., Nifong, W., Thomas, J.M., Gross, U., Thomas, F.T. Re-evaluadon of total lymphoid irradiation (TLI) and cyclosporine therapy in the Syrian hamster to Lewis rat cardiac xenograft model. Transplantation. 49, 639Google Scholar
  7. 7.
    Haisch, C., Lodge, A., Huber, S., Thomas, F.T. In vitro human versus murine xenogeneic reactions. Transplantation. 50,528, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Marchman, W., Araneda, D., DeMasi, R., Taylor, D., Larkin, E., Alqaisi, M., Thomas, F.T. Combinadon therapy with 15-deoxysperguahn and total lymphoid irradiation prolongs xenograft survival in the hamster-to-rat cardiac xenograft model. Transplantation. 1991, In press.Google Scholar
  9. 9.
    Marchman, W., Thomas, F.T., Araneda, D., Carobbi, A., Thomas, J.M. Xenograft rejecdon in immunodeficient mice. Surg. Forum. 41,376, 1990.Google Scholar
  10. 10.
    Thomas, F.T., Marchman, W., Carobbi, A., Araneda, D., Pryor, W., Thomas, J.M. Immunobiology of the xenograft response: xenograft rejection in immunodeficient animals. Transplant Proc. 23,308, 1991.Google Scholar
  11. 11.
    Carobbi, A., Araneda, D., Patselas, T., Thomas, J.M., Mosca, F. Effect of splenectomy in combination with FK-506 and 15-deoxyspergualin on cardiac xenograft survival. Transplant. Proc. 23,549, 1991.PubMedGoogle Scholar
  12. 12.
    Marchman, W., Araneda, D., DeMasi, R., Taylor, D., Carobbi, A., Larkin, E., Alqaisi, M., Thomas, F.T. Therapy of total lymphoid irradiadon and 15-deoxysperguahn blocks survival in the hamster-to-rat xenograft model. Transplant. Proc. 23,201, 1991.Google Scholar
  13. 13.
    DeMasi, R., Araneda, D., Gross, U., Daniel, H., Larkin, E., Thomas, J.M., Swanson, M., Nifong, W., Thomas, F.T. Improved xenograft survival with continued infusion de- oxyspergualin and RATG. J. Invest. Surg. 1991, In press.Google Scholar
  14. 14.
    DeMasi, R., Araneda, D., Gross, U., Daniel, H., Thomas, F.T. 15-Deoxyspergualin (DOSP) is a potent immunosuppressive agent in xenografting. Eur. Surg. Res. 21, 35, 1989.Google Scholar
  15. 15.
    Haisch, C., Lodge, A., Huber, S., Thomas, F.T. The vascular endothelial cell is central to xenogeneic immune reactivity. Surgery. 108,306, 1990.PubMedGoogle Scholar
  16. 16.
    Patselas, T., Thomas, F.T., Araneda, D., Thomas, J.M. Vascularized heart transplantation in immunodeficient mice. Curr. Surg. 1990, In press.Google Scholar
  17. 17.
    Steinbruchel, D.A., Madsen, H., Neilson, B., Larsen, S. Total lymphoid irradiation, cy- closporine-A, and a monoclonal anti-T cell antibody in hamster-to-rat heart transplantation. Transplant. Int. 3,36, 1990.CrossRefGoogle Scholar
  18. 18.
    Steinbruchel, D.A., Madsen, H.H., Nielsen, B., Kemp, E., Larsen, S., Koch, C. Graft survival in a hamster-to-rat heart transplantation model after treatment with total lymphoid irradiation, cyclosporine A, and a monoclonal anti-T-cell antibody. Transplant. Proc. 22, 1088, 1990.PubMedGoogle Scholar
  19. 19.
    Cooper, D.K.C., Human, P.A., Reichart, B. Prolongation of cardiac xenograft (vervet monkey-to-baboon) function by a combination of total lymphoid irradiation and immunosuppressive drug therapy. Transplant. Proc. 19,4441, 1987.PubMedGoogle Scholar
  20. 20.
    Bowman, E., de Bruin, R.W.F., Marquet, R., Jeekel, J. Prolongation of graft survival in hamster to rat xenografting. Transplant. Proc. 21,540, 1989.Google Scholar
  21. 21.
    Downing, T.P., Sadeghi, A.M., Bieber, CP., Aziz, S., Reitz, B.A., Shumway, N.E. Preoperative total lymphoid irradiation, splenectomy, and postoperative cyclosporine in the rat cardiac heterograft model. Transplantation. 39,81, 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    Jooste, S.V., Colvin, R.B., Winn, H.J. The vascular bed as the primary target in the destruction of skin grafts by antiserum. II. Loss of sensitivity to antiserum in long-term xenografts ofskin. J. Exp. Med. 154,1332, 1981.CrossRefGoogle Scholar
  23. 23.
    Menger, M.D., Jager, S., Walter, P., Hammersen, F., Messmer, K. A novel technique for studies on the microvasculature of transplanted islets of Langerhans in vivo. Int. J. Microcirc. Clin. Exp. 9,103, 1990.PubMedGoogle Scholar
  24. 24.
    de Jong, W.H., Steerenberg, P.A., Ursem, P.S., Osterhaus, A.D.M.E., Vos, J.G., Ruitenberg, E.J. The athymic nude rat. III. Natural cell-mediated cytotoxicity. Clin. Immunol. Immunopathol. 17,163, 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    Sprent, J., Bruce, J. Physiology of B cells in mice with X-hnked immunodeficiency (xid) III. Disappearance of xid B cells in double bone marrow chimeras. J. Exp. Med. 160,711, 1984.CrossRefGoogle Scholar
  26. 26.
    Roene, R.A.P. Rejection of skin grafts in the nude mouse. Nature. 251,67, 1974.CrossRefGoogle Scholar
  27. 27.
    Festing, M.F.W., May, D., Connors, T.A. An athymic mutation in the rat. Nature. 274, 365, 1978.PubMedCrossRefGoogle Scholar
  28. 28.
    Gershwin, M.E., Merchant, B. (eds.) Immunologic Defects in Laboratory Animals. New York, Plenum, Vol. 1, 1981.Google Scholar
  29. 29.
    Rygaard, J., Paulsen, C. Xenogeneic tumors grow in nude mice. Acta. Pathol. Microbiol. Immunol. Scand. (A). 77,758, 1969.CrossRefGoogle Scholar
  30. 30.
    Mjaaland, S., Fossum, S. Ag processing normal in nude rats. Scand. J. Immunol. 26,141, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Roder, J., Duwe, A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature. (London). 278,451, 1979.CrossRefGoogle Scholar
  32. 32.
    Dorshkind, K., Pollack, S., Bosma, M., Phillips, R. NK cells are present in SCID mice. JImmunol. 134,3798, 1985.Google Scholar
  33. 33.
    Jooste, V., Winn, H. Strain variations in the responses of mice to xenografts of skin. Transplant. Proc. 9,375, 1977.PubMedGoogle Scholar
  34. 34.
    Forbes, R.D.C., Kuramochi, T., Guttmann, R.D. A controlled sequential morphologic study of hyperacute cardiac allograft rejection in the rat. Lab. Invest. 33,280, 1975.PubMedGoogle Scholar
  35. 35.
    Auchincloss, H. Xenografting: a review. Transplant. Reviews. 4,14, 1990.CrossRefGoogle Scholar
  36. 36.
    Auchincloss, H. Xenogeneic transplantation. Transplantation. 46,1, 1988.PubMedCrossRefGoogle Scholar
  37. 37.
    Eisenthal, A., Rosenberg. S. Systematic induction of cells mediating antibody dependent cellular cytotoxicity following administration of interleukin 2. Cancer Res. 49,6953. 1989.PubMedGoogle Scholar
  38. 38.
    Pierson, N., Winn, H.J. Russell, P.S. Auchincloss, H. Xenogeneic skin graft rejection is especially dependent on CD4 + T cells. JExp. Med. 170,991.1989.CrossRefGoogle Scholar
  39. 39.
    Sakakibara, N. Click. R., Sakakibara. K., Aziz. S. T cell subsets involved in rejection of xenografts. Transplantation. 1991, In press.Google Scholar
  40. 40.
    Knechtle, S., Halperin, E.C., Bollinger, R. Cardiac xenograft survival using total lymphoid irradiation and cyclosporine. Heart Transplant. 4.605, 1985.Google Scholar
  41. 41.
    Kaufman, D.B. Rabe, F.L., Dunn, D.L., Sutherland, D.E.R. Effect of host immunomod- ulation on the prevention of islet allograft primary nonfunction in a murine model. Transplant. Proc. 22,857, 1990.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • F. T. Thomas
  • W. Marchman
  • A. Carobbi
  • R. DeMasi
  • D. Araneda
  • T. Patselas
  • E. Larkin
  • K. Pittman
  • M. Alqaisi
  • C. Haisch
  • J. M. Thomas

There are no affiliations available

Personalised recommendations