Advertisement

Experimental Xenotransplantation in Rodents — III: Total Lymphoid Irradiation, Cyclosporine, and Monoclonal Antibodies

  • D. A. Steinbruchel
  • B. Nielsen
  • E. Kemp

Abstract

A treatment strategy including total body irradiation (TBI) or total lymphoid irradiation (TLI) in combination with cyclosporine (CsA) would seem to be a promising method for prolonging xenograft survival in the rodent [1-6]. The most impressive resuhs have been reported by Knechtle et al. where graft survival after TLI + CsA treatment was prolonged for more than 100 days in a Syrian hamster-to-Lewis rat model [7, 8]. Several attempts by other groups, however, to reproduce these results have not been successful [4,5,9].

Keywords

Graft Survival Graft Rejection Total Lymphoid Irradiation Flow Cytometric Evaluation Xenograft Survival 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouwman, E., de Bruin, R.W.F., Marquet, R.L., Jeekel, J. Prolongadon of graft survival in hamster-to-rat xenografting. Transplant. Proc. 21 (1), 540, 1989.PubMedGoogle Scholar
  2. 2.
    Yamaguchi, Y., Halperin, E.G., Harland, R.C., Wyble, C., Bollinger, R.R. A synergistic effect of total lymphoid irradiation, cyclosporine, and splenectomy in a hamster-to-rat hepahc xenograft model. Transplant. Proc. 21 (3), 3558, 1989.Google Scholar
  3. 3.
    Yamaguchi, Y., Halperin, E.G., Harland, R.G., Wyble, G., Bollinger, R.R. Significant prolongation of hamster liver transplant survival in Lewis rats by total lymphoid irradiadon, cyclosporine, and splenectomy. Transplantation. 49,13, 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    Demasi, R., Alqaisi, M., Araneda, D., Nifong, W., Thomas, J., Cross, U., Swanson, M., Thomas, F. Réévaluation of total lymphoid irradiation and cyclosporine therapy in the Syrian hamster-to-Lewis rat cardiac xenograft model. Transplantation. 49,63, 1990.CrossRefGoogle Scholar
  5. 5.
    Steinbruchel, D.A., Madsen, H.H.T., Nielsen, B., Larsen, S., Koch, C., Jensenius, J.C., Hougesen, C., Kemp, E. Treatment with total lymphoid irradiation, cyclosporin A and a monoclonal anti-T-cell antibody in a hamster-to-rat heart transplantation model: graft survival and morphologic analysis. Transplant. Int. 3,36, 1990.CrossRefGoogle Scholar
  6. 6.
    Tufveson, G., Roos-Engstrand, E., Gaunedahl, C., Fellstrom, B., Larsson, E. Heterotopic cardiac xenograft transplantation from mouse to rat. Transplant. Proc. 22 (1), 139, 1990.PubMedGoogle Scholar
  7. 7.
    Knechtle, S.J., Halperin. E.G., Tahani Saad, B.S., Bollinger, R.R. Prolonged heart xenograft survival using combined total lymphoid irradiation and cyclosporine. J. Heart Transplant. 5,254, 1986.PubMedGoogle Scholar
  8. 8.
    Knechtle, S.J., Halperin, E.G., Bollinger, R.R. Xenograft survival in two species combinations using total lymphoid irradiation and cyclosporine. Transplantation. 43, 173, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Steinbruchel, D.A., Madsen, H.H., Nielsen, B., Kemp, E., Larsen, S., Koch, C. Graft survival in a hamster-to-rat heart transplantation model after treatment with total lymphoid irradiation, cyclosporin A, and an anti-T-cell antibody. Transplant. Proc. 22,1088, 1990.PubMedGoogle Scholar
  10. 10.
    Auchincloss, H. Xenogeneic transplantation. Transplantation. 46,1, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Herbert, J., Roser, B. Strategies of monoclonal antibody therapy that induce permanent tolerance of organ transplants. Transplantation. 46,128 S, 1988.Google Scholar
  12. 12.
    Moses, R.D., Pierson, R.N., Winn, H.J., Auchincloss, H. Xenogeneic proliferation and lymphokine production are dependent on CD4+ helper T cells and self antigen-presenting cells in the mouse. J. Exp. Med. 172,567, 1990.PubMedCrossRefGoogle Scholar
  13. 13.
    Pierson, R.N., Winn, H.J., Russel, P.S., Auchincloss, H. Xenogeneic skin graft rejection is especially dependent on CD4+ T cells. J. Exp. Med. 170,991, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Dallman, M.J., Thomas, M.L., Green, J.R. MRC OX-19: a monoclonal antibody that labels rat T-lymphocytes and augments in vitro proliferative responses. Eur. J. Immunol. 14,260, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Jefferies, W.A., Green, J.R., Wilhams, A.F. Authentic T helper CD4 (W3/25) antigen on rat peritoneal macrophages. J. Exp. Med. 162,117, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Garovoy, M.R., Rheinschmidt, M.A., Bigos, M., Perkins, H., Colombe, B., Feduska, N., Salvatierra, O. Flow cytometry analysis: a high technology crossmatch technique facilitating transplantation. Transplant Proc. 15,1939, 1985.Google Scholar
  17. 17.
    Farnsworth, A., Wotherspoon, J.S., Dorsch, S.E. Postirradiation recovery of lymphoid cells in the rat. Transplantation. 46,418, 1988.PubMedCrossRefGoogle Scholar
  18. 18.
    Sakakibara, N., Click, R.E., Sakakibara, K., Aziz, S., Jamieson, S.W., Wick, M.R. Unconventional lymphocytes involved in rejection of xenogeneic heart grafts. Lab Invest. 62,481, 1990.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • D. A. Steinbruchel
  • B. Nielsen
  • E. Kemp

There are no affiliations available

Personalised recommendations