Experimental Xenotransplantation of Encapsulated Cells

  • R. P. Lanza
  • P. Soon-Shiong


Transplantation of xenogeneic tissues of widely divergent species is difficult due to vigorous humoral and cellular immune responses. A possible solution to this problem might be the use of microencapsulation as an immunoisolation procedure. The unique ability of cellular grafts to be enclosed in artificial membranes that permit crossover of low molecular weight substances such as nutrients and oxygen, but not of cells or high molecular weight components, provides a distinct advantage of isolated xenogeneic tissue over whole engrafted organs, and many, in the long run, prove the only way to establish prolonged survival of xenografts in patients with diseases caused by the loss or malfunction of specific cells in the body.


Fulminant Hepatic Failure Parathyroid Cell Encapsulate Cell Mannuronic Acid Islet Xenograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prehn, R.T., Weaver, J.M., Algire, G.H. The diffusion-chamber technique apphed to a study of the nature of homograft resistance. J. Nat. Cancer Inst 15,509, 1954.PubMedGoogle Scholar
  2. 2.
    Albisser, A.M., Leibel, B.S., Ewart, G., Davidovac, Z., Botz, C.K., Zinger, W. An artificial endocrine pancreas. Diabetes. 23,389, 1974.PubMedGoogle Scholar
  3. 3.
    Strautz, R.L. Studies of hereditary-obese mice (obob) after implantation of pancreatic islets in Milhpore filter capsules. Diabetologia. 6,306, 1970.PubMedCrossRefGoogle Scholar
  4. 4.
    Theodorou, N.A., Vrbova, H., Tyhurst, M., Howell, S.L. An assessment of diffusion chambers for use in pancreatic islet cell transplantation. Transplantation. 27,350, 1979.PubMedGoogle Scholar
  5. 5.
    Gates, R.J., Lazarus, N.R. Reversal of streptozotocin-induced diabetes in rats by intraperitoneal implantation of encapsulated neonatal rabbit pancreatic tissue. Lancet 2, 1257, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Chick, W., Like, A.A., Lauris, V. Beta cell cultures on synthetic capillaries: an artificial endocrine pancreas. Science. 187,847, 1975.PubMedCrossRefGoogle Scholar
  7. 7.
    Archer, J., Kaye, R., Mutter, G. Control of streptozotocin diabetes in Chinese hamsters by cultured mouse islet cells without immunosuppression: a preliminary report. J. Surg. Res. 28,77, 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Altman, J.J., Manoux, A., Callard, P., Houlbert, D., Desplanques, N., Bruzzo, F., Galletti, P.M. Successful pancreatic xenografts using semipermeable membranes. Artif. Organs. 5 (Suppl.), 776, 1981.Google Scholar
  9. 9.
    Tze, W.J., Wong, F.C., Chen, L.M., O’Young, S. Implantable artificial endocrine pancreas unit used to restore normoglycemia in the diabetic rat. Nature. 264, 466, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Lim, F., Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Sciences 210, 908, 1980.CrossRefGoogle Scholar
  11. 11.
    Sun, A.M., Goosen, M.F., O’Shea, G. Microencapsulated cells as hormone delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 4,1, 1987.PubMedGoogle Scholar
  12. 12.
    Soon-Shiong, P., Lu, Z.N., Greqal, L, Lanza, R.P., Clark, W. An in vitro method of assessing the immunoprotective properties of microcapsule membranes using pancreatic and tumor cell targets. Transplant Proc. 22,754, 1990.PubMedGoogle Scholar
  13. 13.
    Soon-Shiong, P., Heintz, R., Yao, Z., Yao, O.X., Lanza, R.P. Glucose-insulin kinetics of the extravascular bioartificial pancreas. 39 (Suppl. 1), 311, 1990.Google Scholar
  14. 14.
    Chick, W.L., Perna, J., Lauris, W., Low, D., Galletti, P.M., Whittemore, A., Like, A., Colton, C.K., Lysaght, M. Artificial pancreas using living beta cells: effects on glucose homeostasis in diabetic rats. Science. 197, 780, 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Sun, A.M., Parisius, W., Healy, G., Vacek, L, Macmorine, H.G. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes. 26, 1136, 1977.PubMedCrossRefGoogle Scholar
  16. 16.
    Tze, W.JH., Tai, F.C., Davis, H.R. Studies with implantable artificial capillary units containing rat islets on diabetic dogs. Diabetologia. 19,541, 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Reach, G., Poussier, P., Sausse, A., Assan, R., Itoh, M., Furman, B.L., Gerich, J.E. Functional evaluation of a bioartificial pancreas using isolated islets perfused with blood ultrafiltrate. Diabetes. 30,296, 1981.PubMedGoogle Scholar
  18. 18.
    Yderstroede, K.B. Pancreatic islet transplantation: experimental and clinical aspects. Dan. Med.Bull. 34, 323, 1987.PubMedGoogle Scholar
  19. 19.
    Goosen, M.F. A. Insulin delivery systems and the encapsulation of cells for medical and industrial use. CRC. Crit. Rev. Bio-compat. 3,1, 1987.Google Scholar
  20. 20.
    Buchwald, H., Corry, R.J., Langer, R., Sun, A.M. Insulin replacement: bionic or natural. Trans. Am. Soc. Artif Intern. Organs. 33,806, 1987.Google Scholar
  21. 21.
    Tze, W.J., Tai, J., Wong, F.C., Davis, H.R. Studies with implantable artificial capillary units containing rat islets in diabetic dogs. Diabetologia. 19,541, 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Whittemore, A.D., Chick, W.L., Galetti, P.M. Effects of the hybrid artificial pancreas in diabetic rats. Trans. Am. Soc. Artif Intern. Organs. 23,336, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Klomp, G.F., Hashiguchi, H., Ursell, P.C., Takeda, Y., Tadahiro, T., Dobelle, W.H. Macroporous hydrogel membranes for a hybrid artificial pancreas. II. Biocompatibility. J. Biomed. Mat. Res. 17,865, 1983.CrossRefGoogle Scholar
  24. 24.
    Altmann, J.J., Houlbert, D., Chollier, A., Leduc, A., Mcmillan, P., Galletti, P.M. Encapsulated human islet transplants in diabetic rats. Trans. Am. Soc. Artif Intern. Organs. 30,382, 1984.Google Scholar
  25. 25.
    Gerlis, L. Islets in envelopes could beat diabetes. Science. 6,30, 1986.Google Scholar
  26. 26.
    Sun, A.M. Encapsulated versus modified endocrine cells for organ replacement. Trans. Am. Soc. Artif Intern. Organs. 33,787, 1987.Google Scholar
  27. 27.
    Soon-Shiong, P., Lanza, R.P. Pancreas and islet-cell transplantation. Postgrad. Med. 87, 133, 1990.PubMedGoogle Scholar
  28. 28.
    Calafiore, R., Brotzu, G., Basta, G., Falorni, A., Piermattei, M., Avellini, L., Brunetti, P. Successful transplantation of microencapsulated islets within artificial vascular prosthesis. Diabetes. 39 (Suppl. 1), 158A, 1990.Google Scholar
  29. 29.
    Chang, T.M.S. Semipermeable microcapsules. Sciences. 146,565, 1964.CrossRefGoogle Scholar
  30. 30.
    Chang, T.M.S., Mcintosh, F.C., Mason, S.G. Semipermeable aqueous microcapsules. I. Preparation and properdes. Can. J. Physiol Pharm. 44,115, 1966.CrossRefGoogle Scholar
  31. 31.
    Sefton, M.V., Broughton, R.L. Microencapsuladon of erythrocytes. Biochem. Biophys. Acm. 717,473, 1982.CrossRefGoogle Scholar
  32. 32.
    Lamberd, F.V., Wheadey, M.A., Evangelista, R.A., Sefton, M.V. The use of polyacrylates in the microencapsulation of viable tissue cells. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 24,75, 1983.Google Scholar
  33. 33.
    Rha, C., Rodriguez-Sanchez, D. Process for encapsuladon and encapsulated active material system. US Patent. N. 766,214, 1988.Google Scholar
  34. 34.
    Rha, C. Chitosan as a biomaterial. In: Biotechnology in the Marine Sciences. Colwell, R.R., Parish, E.R., Sinskey, A.J. (eds.) John Wiley & Sons, New York, 1984, p. 177.Google Scholar
  35. 35.
    Hackel, V., Klein, J., Megret, R., Wagner, F. Immobilization of microbial cells in polymeric matrices. Eur. J. Appi Microbiol 1,291, 1975.CrossRefGoogle Scholar
  36. 36.
    Kierstan, M., Bucke, C. The immobilization of microbial cells, subcellular organelles and enzymes in calcium alginate gels. Biotechnol Bioeng. 9,387, 1977.CrossRefGoogle Scholar
  37. 37.
    Sun, A.M., O’Shea, G., Van Rooy, H., Goosen, M. Microencapsulation d’ilots de Langerhans et pancreas ardficial. J. Ann. Diabetol (Hotel-Dieu). 20,161, 1982.Google Scholar
  38. 38.
    Sun, A.M., O’Shea, G.M., Goosen, M.F.A. Injectable microencapsulated islet cells as a bioartificial pancreas. Appl. Biochem. Biotechnol 10,87, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Lanza, R.P., Heintz, R., Merideth, N., Yao, Z., Yao, Q., Zavitz, D., Chen, C., Soon-Shiong, P. Large-scale canine and human islet isolation using a physiological islet purification soludon. Diabetes. 39 (Suppl. 1), 309A, 1990.Google Scholar
  40. 40.
    Darquy, S., Reach, G. Immunoisolation of pancreadc B cells by microencapsuladon. Diabetologia. 28,776, 1985.PubMedGoogle Scholar
  41. 41.
    Pukel, C., Baquerizo, H., Rabinovitch, A. Destruction of rat islet cell monolayers by cytokines. Synergistic interactions of interferon-, tumor necrosis factor, lymphotoxin, and TNF. Diabetes. 39 (Suppl. 1), 242A, 1990.Google Scholar
  42. 42.
    Miyajima, E., Yamada, K., Nonaka, K. Ceh selectivity in MHC andgen inducdon and islet cell cytotoxicity by IFN-and TNF. Diabetes. 39 (Suppl. 1), 242A, 1990.Google Scholar
  43. 43.
    Kover, K., Moore, W.V. Expression of class II antigen on neonatal rat islets by interferon and tumor necrosis factor. Transplant. Proc. 22,853, 1990.PubMedGoogle Scholar
  44. 44.
    Campbell, I.L., Kay, T.W.H., Oxbrow, L., Harrison, L.C. IFN-and IL-6 are involved in the pathogenesis of autoimmune diabetes in NOD mice given cyclophosphamide. Diabetes. 39 (Suppl. 1), 68A, 1990.Google Scholar
  45. 45.
    DeClercq, L., Remade, C., Reusens-Billen, B., Hoet, J.J. Does IL-6 mediate the cytotoxic effect of IL-1 on cultured neonatal rat islets? Diabetes. 39 (Suppl. 1), 100A, 1990.Google Scholar
  46. 46.
    Mandrup-Poulsen, T., Bendtzen, K., Nerup, J., Dinarello, C.A., Suenson, M., Nielsen, J.H. Affinity-purified human interleukin-1 is cytotoxic to isolated islets of Langerhans. Diabetologia. 29,63, 1986.PubMedCrossRefGoogle Scholar
  47. 47.
    Ronel, S.H., D’Andrea, M.J., Hasiguchi, H., Klomp, G.J., Dobelle, W.H. Macroporous hydrogel membranes for a hybrid artificial pancreas. 1. Synthesis and chamber fabrication. J. Biomed. Mat. Res. 17,855, 1983.CrossRefGoogle Scholar
  48. 48.
    Scharp, D.M., Mason, N.S., Sparks, R.E. Islet immuno-isolation: the use of hybrid artificial organs to prevent islet tissue rejection. World J. Surg. 8,221, 1984.PubMedCrossRefGoogle Scholar
  49. 49.
    Soon-Shiong, P., Otterlie, M., Skjak-Braek, G., Smidsrod, O., Heintz, R., Lanza, R.P., Espevik, T. An immunological basis for the fibrotic reacdon to implanted microcapsules. Transplant. Proc. 23,758, 1991.PubMedGoogle Scholar
  50. 50.
    Sefton, M.V., Dawson, R.M., Broughton, R.L., Blysnivk, J., Sugamori, M.E. Microencapsuladon of mammalian cells in a water insoluble polyacrylate by coextrusion and interfacial precipitadon. Biotechnol and Bioeng. 29,1135, 1987.CrossRefGoogle Scholar
  51. 51.
    Iwata, H., Amemiya, H, Matsuda, T., Takano, H., Hayashi, R., Akutsu, T. Evaluation of microencapsulated islets in agarose gells as bioartificial pancreas by studies of hormone secredon in culture and by xenotransplantadon. Diabetes. 38 (Suppl. 1), 224, 1989.PubMedGoogle Scholar
  52. 52.
    Shiotani, T., Shiiki, Y., Kimura, T., Kako, M., Hayashi, H. Encapsuladon of unstable cells and substances with polyanionic polysaccharides and chitin derivatives. Japanese Patent No. 6111,139, 1986.Google Scholar
  53. 53.
    Mcknight, C.A., Ku, A., Goosen, M.F.A., Sun, D., Penney, C. Synthesis of chitosan-alginate microcapsule membranes. J. Bioact. Compat. Polymers. 3,334, 1988.CrossRefGoogle Scholar
  54. 54.
    Rha, C., Rodriguez-Sanchez, D., Kienzle-Sterzer, C. In: Biotechnology of Marine Polysaccharides. R.R. Colwell, E.R. Pariser, A.J. Sinskey (eds.) Hemisphere, Washington, 1984, p. 283.Google Scholar
  55. 55.
    Boag, A.H., Sefton, M.V. Microencapsulation of human fibroblasts in a water insoluble polyacrylate. Biotech. Bioeng. 30,954, 1987.CrossRefGoogle Scholar
  56. 56.
    Sugamori, M.E., Sefton, M.V. Microencapsulation of pancreatic islets in a water insoluble polyacrylate. Trans. Am. Soc. Artif Intern. Organs. 35,791, 1989.Google Scholar
  57. 57.
    Dawson, R.M., Broughton, R.L.W., Stevenson, T.K., Sefton, M.V. Microencapsulation of CHO cells in a hydroxyethyl methacrylate-methyl methacrylate copolymer. Biomaterial. 8, 360, 1987.CrossRefGoogle Scholar
  58. 58.
    Skajak-Braek, G., Martinsen, A. Application of some agal polysaccharides in biotechnology. Norwegian Institute of Technology. aaaTrondheim, 1989.Google Scholar
  59. 59.
    Matsunaga, T., Karube, I., Suzuki, S. Some observations on immobilized hydrogen-producing bacteria: behavior of hydrogen in gel membranes. Biotechnol. Bioeng. 22,2607, 1980.CrossRefGoogle Scholar
  60. 60.
    Nilsson, K., Scheirer, W., Merten, O.W., Ostberg, L., Liehl, E., Katinger, H.W.S., Mosbach, K. Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature. 302,629, 1983.PubMedCrossRefGoogle Scholar
  61. 61.
    Dupuy, B., Gin, H., Cadic, C., Baquey, Ch., Ducassou, D. Polyacrylamide encapsulation of agarose microbeads. An Alternative to alginate polylysine microcapsules. Proceedings of the 2nd International Congress on Pancreatic and Islet Transplantation. aaaMinneapolis, Minnesota, 1989.Google Scholar
  62. 62.
    O’Shea, G.M., Sun, A.M. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes. 35,943, 1986.PubMedCrossRefGoogle Scholar
  63. 63.
    Ricker, A., Stockberger, S., Halban, P. Hyperimmune response to microencapsulated xenogeneic tissue in non-obese diabetic mice. In:The Immunology of Diabetes Mellitus. Jaworski, M. (ed.) Elsevier; Amsterdam, New York, Oxford, 1986, p. 1193.Google Scholar
  64. 64.
    Norton, J., Weber, C., Reemtsma, K. Microencapsulation: prevention of islet graft rejection. In: Transplantation of the Endocrine Pancreas in Diabetes Mellitus. Van Schilfgaarde, R., Hardy, M. (eds.) Elsevier; Amsterdam, New York, Oxford, 1988, p. 308.Google Scholar
  65. 65.
    Weber, C., Zabinski, S., Norton, J., Koschitzky, T., D’Agati, V., Reemtsma, K. The fu ture role of microencapsulation in xenotransplantation. In: Xenograft 25. Hardy, M (ed.) Elsevier; Amsterdam, New York, Oxford, 1989, p. 297Google Scholar
  66. 66.
    Weber, C.J., Zabinski, S., Koschitzky, T., Wicker, L., Rajotte, R., K’Agati, V., Peterson L., Norton, J., Reemtsma, K. The role of CD4+ helper T cells in the destruction of mi croencapsulated islet xenografts in NOD mice. Transplantation. 49,396, 1990.PubMedCrossRefGoogle Scholar
  67. 67.
    Lanza, R.P., Heintz, R., Merideth, N., Yao, Z., Yao, W., Soon-Shiong, P. Successful long-term transplantation of a bioartificial pancreas in the large and small animal model. Annual Meeting Western Association of Transplant Surgeons. Oakland, California 1990.Google Scholar
  68. 68.
    Soon-Shiong, P., Heintz, R., Merideth, N., Yao, Z., Yao, Q.Z., Zheng, T., Lanza, R.P Reversal of diabetes in pancreatectomized dogs by transplantation of microencapsulat ed rat hepatocyte xenograft transplants in mice. In preparation.Google Scholar
  69. 69.
    Wong, H., Chang, T.M.S. The viability and regeneration of artificial cell microencapsu lated rat hepatocyte xenograft transplants in mice. Biomat. Art. Cells Art. Org. 16,731 1988.Google Scholar
  70. 70.
    Makowka, L., Falk, R.E., Rostein, L.E., Fald, J.A., Nossal, N., Langer, B., Blendis, L.M., Phillips, M.J. Cellular transplantation in the treatment of experimental hepatic failure. Science. 210,901, 1980.PubMedCrossRefGoogle Scholar
  71. 71.
    Cai, Z., Shi, Z., Sherman, M., Sun, A.M. Development and evaluation of a system of microencapsulation of primary rat hepatocytes. Hepatology. 10,855, 1989.PubMedCrossRefGoogle Scholar
  72. 72.
    Sun, A.M., Cai, Z., Shi, Z., Ma, F., O’Shea, G.M. Microencapsulated hepatocytes: an in vitro and in vivo study. Biomat. Art. Cells Art. Org. 15,1483, 1987.Google Scholar
  73. 73.
    Sun, A.M., Cai, Z., Shi, Z., Ma, R, O’Shea, G.M., Gharapetian, H. Microencapsulated hepatocytes as a bioartificial liver. Trans. Am. Soc. Artif. Intern. Organs. 32,39, 1986.Google Scholar
  74. 74.
    Hori, M. Will artificial hver therapy ever become a reality? Artif Organs. 12,293, 1988.PubMedCrossRefGoogle Scholar
  75. 75.
    Widner, H., Brundin, P., Rehncroma, S., Gustavii, B., Frackowiar, R., Leenders, K., Sawle, G., Rothwell, J., Marsden, C., Bjorklund, A., Lindvall, O. Transplanted allogeneic fetal dopamine neurons survive and improve motor function in idiopathic Parkinson’s disease. Transplant. Proc. 23,793, 1991.PubMedGoogle Scholar
  76. 76.
    Phelps, C.H., Gage, F.H., Growdon, J.H., Hefti, F., Harbaugh, R., Johnston, M.V., Khachaturian, Z.S., Mobley, W.C., Price, D.L., Raskind, M., Simpkins, J., Thai, L.J., Woodcock, J. Potential use of nerve growth factor to treat Alzheimer’s disease. (Letter) Science. 243,11, 1989.Google Scholar
  77. 77.
    Phelps, C.H., Gage, F.H., Growdon, J.H., Hefti, F., Harbaugh, R., Johnston, M.V., Khachaturian, Z.S., Mobley, W.C, Price, D.L., Rakind, M., Simpkins, J., Thai, L.J., Woodcock, J. Potential use of nerve growth factor to treat Alzheimer’s disease. Neurobiol. of Aging. 10,205, 1989.CrossRefGoogle Scholar
  78. 78.
    Hefti, F., Knusel, B. Chronic administration of nerve growth factor and other neurotropic factors to the brain. Neurobiol. of Aging. 9,689, 1988.CrossRefGoogle Scholar
  79. 79.
    Roberts, H.R. The treatment of hemophilia: past tragedy and future promise. N. Engl. J. Med. 321,1188, 1989.PubMedCrossRefGoogle Scholar
  80. 80.
    Hellman, L., Smedsrod, B., Sandberg, H., Pettersson, U. Secretion of coagulant factor VIII activity and antigen by in vitro cultivated rat liver sinusoidal endothelial cells. Br. J. Hematol. 13,348, 1989.CrossRefGoogle Scholar
  81. 81.
    Lu, Z., Zheng, T., Lanza, R.P., Soon-Shiong, P. Reversal of hypocalcemia in parathyroidectomized rats by transplantation of microencapsulated parathyroid cells. In preparation.Google Scholar
  82. 82.
    Fu, X.W., Sun, A.M. Microencapsulated parathyroid cells as a bioartificial parathyroid: in vivo studies. Transplantation. 47,432, 1989.PubMedCrossRefGoogle Scholar
  83. 83.
    Darquy, S., Sun, A.M. Microencapsulation of parathyroid cehs as a bioartificial parathyroid: in vitro studies. Trans. Am. Soc. Artif. Intern. Organs. 33,356, 1987.Google Scholar
  84. 84.
    Trey, C. The fulminant hepatic failure surveillance study. Brief review of the effects of presumed etiology and age of survival. Can. Med. Assoc. J. 106,525, 1972.PubMedGoogle Scholar
  85. 85.
    Rueff, B., Benhamou, J.P. Acute hepatic necrosis and fulminant hepatic failure. Gut. 14,805, 1983.CrossRefGoogle Scholar
  86. 86.
    Krom, R.A., Gips, G.H. Skills and resources needed for liver transplantation. Hepatology. 4,72S, 1984.PubMedCrossRefGoogle Scholar
  87. 87.
    Scharschmidt, B.F. Human liver transplantation: analysis of data on 540 patients from four centers. Hepatology. 4,95S, 1984.PubMedCrossRefGoogle Scholar
  88. 88.
    Aiken, J., Cima, L., Schloo, B., Mooney, D., Johnson, L., Langer, R., Vacanti, J.P. Studies in rat liver perfusion for optimal harvest of hepatocytes. J. Ped. Surg. 25,140, 1990.CrossRefGoogle Scholar
  89. 89.
    Bruni, S., Chang, T.M.S. Hepatocytes immobihzed by microencapsulation in artificial cells: effects on hyperbihrubinemia in Gunn rats. Biomat. Art. Cells Art. Org. 17, 403, 1989.Google Scholar
  90. 90.
    Beal, M.F., Richardson, E.P., Martin, J.B. Degenerative diseases of the nervous system. In: Harrison’s Principles of Internal Medicine. 12th Edition. Wilson, J.D., Braunwald, E., Isselbacher, K.J., Petersdorf, R.G., Martin, J.B., Fauci, A.S., Root, R.K. (eds.) McGraw-Hill, New York, 1991, p. 2060.Google Scholar
  91. 91.
    Tze, W.J., Tai, J. Xenotransplantation of rat pancreatic endocrine cells in spontaneous and streptozotocin-induced diabetic monkeys. Transplant. Proc. 21,2736, 1989.PubMedGoogle Scholar
  92. 92.
    Chabot, J. A., Stegall, M.D., Weber, C., Reemtsma, K., Hardy, M.A. Pancreatic islet alloand xenotransplantation in cynomolgus monkeys. Transplant. Proc. 21,2739, 1989.PubMedGoogle Scholar
  93. 93.
    Hefti, F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6,2155, 1986.PubMedGoogle Scholar
  94. 94.
    Wilhams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fisher, W., Bjorklung, A., Gage, F.H. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA. 83,9231, 1986.CrossRefGoogle Scholar
  95. 95.
    Fisher, W., Wictorin, K., Bjorklund, A., Williams, L.R., Varon, S., Gage, F.H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Neurobiol. Aging. 10,89, 1989.CrossRefGoogle Scholar
  96. 96.
    Bruce, G., Heinrich, G. Production and characterization of biologically active recombinant nerve growth factor. Neurobiol. Aging. 10,89, 1989.PubMedCrossRefGoogle Scholar
  97. 97.
    Takeuchi, R., Murase, K., Furukawa, Y, Furukawa, S., Hayashi, K. Stimulation of nerve growth factor synthesis/secretion by 1, 4-benzoquinone and its derivatives in cultured mouse astroglial cells. Febs Lett. 261,63, 1990.PubMedCrossRefGoogle Scholar
  98. 98.
    Furukawa, S., Furukawa, Y., Satoyoshi, E., Hayashi, K. Regulation of nerve growth factor synthesis/secretion by catecholamine in cultured mouse astroglial cells. Biochem. Biophys. Res. Commun. 147,1048, 1987.PubMedCrossRefGoogle Scholar
  99. 99.
    Rohrer, H., Heumann, R., Thoenen, H. The synthesis of nerve growth factor (NGF) in developing skin is independent of innervation. Dev. Biol. 128,240, 1988.PubMedCrossRefGoogle Scholar
  100. 100.
    Goedert, J.J., Kessler, C.M., Aldenont, L.M., Biggar, R.J., Andes, W.A., White, G.C., Drummond, J.E., Vaidya, K., Mann, D.L., Eyster, M.E., Ragni, M.V., Lederman, M.M., Cohen, A.R., Bray, G.L., Rosenberg, P.S., Friedman, R.H., Hilgartner, M.W., Blattner, W.A., Kroner, B., Gail, M.H. A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia. N Engl. J. Med. 321,1141, 1989.PubMedCrossRefGoogle Scholar
  101. 101.
    Handin, R.I. Disorders of coagulation and thrombosis. In: Harrison’s Principles of Internal Medicine. 12th Edition. Wilson, J.D., Braunwald, E., Issellbacher, K.J., Petersdord, R.G., Martin, J.B., Fauci, A.S., Root, R.K. (eds.) McGraw-Hill, New York, 1991,p. 1505.Google Scholar
  102. 102.
    Wion, K.L., Kelly, D.A., Summerfield, J.A., Tuddenham, E.G.D., Lawn, R.M. Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature. 317,726, 1985.PubMedCrossRefGoogle Scholar
  103. 103.
    Webster, W.P., Zukoski, C.F., Hutchin, P., Reddick, R.L., Mandel, S.R., Penich, G.D. Plasma factor VIII synthesis and control as revealed by canine organ transplantation. Am. J. Fhysiol. 220,1147, 1971.Google Scholar
  104. 104.
    Lewis, J.H., Bontempo, F.A., Spero, J.A., Ragni, M.V., Starzl, T.E. Liver transplantation in a hemophihac. N. Engl. J. Med. 312,1189, 1985.PubMedGoogle Scholar
  105. 105.
    White, J.V., Logerfo, P., Feind, C., Weber, C. Autologous parathyroid transplantation. (Letter) Lancet. 2,461, 1982.Google Scholar
  106. 106.
    Wells, S.A., Gunnells, J.C., Shelburne, J.D., Schneider, A.B., Serwood, L.M. Transplantation of the parathyroid gland in man: clinical indications and results. Surgerv. 78, 34, 1975.Google Scholar
  107. 107.
    Aebischer, P., Russell, P.C., Christensen, L., Panol, G., Monchik, J.M., Galletti, P.M. A bioartificial aprathyroid. Trans. Am. Soc. Artif Intern. Organs. 32,134, 1986.CrossRefGoogle Scholar
  108. 108.
    Lu, Z., Zheng, T., Lanza, R.P., Soon-Shiong, P. Reversal of hypocalcemia in parathyroidectomized rats by transplantation of microencapsulated parathyroid cells. In preparation.Google Scholar
  109. 109.
    Wilson, J.D. Hormones and hormone action. In: Harrison’s Principles of Internal Medicine. 12th Edition. Wilson, J.D., Braunwald, E., Isselbacher, K.J., Petersdorf, R.G., Martin, J.B., Fauci, A.S., Root, R.K. (eds.) McGraw-Hill, New York, 1991, p. 1647.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. P. Lanza
  • P. Soon-Shiong

There are no affiliations available

Personalised recommendations