Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 52))

  • 202 Accesses

Abstract

So far, we have considered only systems which are not distributed (i.e. are described by a finite set of differential equations). However, the majority of the results obtained are also applicable to distributed active systems, provided that spatial coherence of the patterns is maintained. Because of the long-range spatial order, the dynamics of coherent patterns can be effectively described by models involving only a small number of independent variables. As we already know, this does not exclude that the temporal behavior of a pattern will be chaotic (i.e. that long-range temporal order will be absent). In the latter case, the resulting regime can be described as “early” (or few-mode) turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Babin, M.I. Vishik: Usp. Mat. Nauk 38, 133–187 (1983)

    MathSciNet  Google Scholar 

  2. O.A. Ladyzhenskaya: Usp. Mat. Nauk 42, 25–60 (1987)

    MathSciNet  Google Scholar 

  3. P.R. Gromov, A.B. Zobnin, M.I. Rabinovich, A.M. Reiman, M.M. Sushchik: Dokl. Akad. Nauk SSSR 292, 284–287 (1987)

    MathSciNet  ADS  Google Scholar 

  4. D. Ruelle: Commun. Math. Phys. 93, 285–300 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P. Constantin, C. Foias, B. Nikolaenko, R. Teman: Integral Manifolds for Dissipative Partial Differential Equations (Springer, Berlin, Heidelberg 1989)

    Book  MATH  Google Scholar 

  6. P. Constantin, C. Foias, J.D. Gibbon: Nonlinearity 2, 241 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R. Temam: “Attractors for Navier-Stokes equations”, in Nonlinear Differential Equations and Their Applications (Pitman, London 1985) pp. 272–292

    Google Scholar 

  8. D.V. Lyubimov, G.F. Putin, V.I. Chernatynskii: Dokl. Akad. Nauk SSSR 235, 554–556 (1977)

    Google Scholar 

  9. M.I. Rabinovich: Usp. Fiz. Nauk 125, 123–168 (1978)

    MathSciNet  Google Scholar 

  10. N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw: Phys. Rev. Lett. 45, 712–716 (1980)

    Article  ADS  Google Scholar 

  11. F. Takens: “Detecting strange attractors in turbulence”, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin, Heidelberg 1981) pp. 366–381

    Chapter  Google Scholar 

  12. M.W. Hirsh: Differential Topology (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  13. J.D. Farmer: Physica D 4, 366–393 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Mane: “On the dimension of the compact invariant sets of certain nonlinear maps”, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin, Heidelberg 1981) pp. 230–242

    Chapter  Google Scholar 

  15. S.N. Lukashchuk, A.A. Predtechenskii, G. E. Falkovich, A.I. Chernykh: “Calculation of attractor dimensions from experimental data”, preprint 280, Inst. Automatics and Electrometry, Novosibirsk 1985

    Google Scholar 

  16. D.S. Broomhead, G.P. King: Physica D 20, 217–236 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A.I. Smimov: Zh. Eksp. Teor. Fiz. 94, 185–193 (1988)

    Google Scholar 

  18. P. Grassberger, I. Procaccia: Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Grassberger, I. Procaccia: Physica D 9, 189–208 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. B. Malraison, P. Atten, P. Berge, M. Dubois: J. Physique Lett. (Paris) 44, L897–L902 (1983)

    Google Scholar 

  21. A. Babloyantz, J.N. Salazar, C. Nicolis: Phys. Lett. A 111, 152–156 (1985)

    Article  ADS  Google Scholar 

  22. I. Dvorak, J. Siska: Phys. Lett. A 118, 63–66 (1986)

    Article  ADS  Google Scholar 

  23. H. Yamazaki, M. Mino, H. Nagashima, M. Warden: J. Phys. Soc. Japan 56, 742–750 (1987)

    Article  ADS  Google Scholar 

  24. M. Eiswirth, K. Krischer, G. Ertl: Surface Sci. 202, 565–591 (1988)

    Article  ADS  Google Scholar 

  25. A. Ben-Mizrachi, I. Procaccia, P. Grassberger: Phys. Rev. A 29, 975–977 (1984)

    Article  ADS  Google Scholar 

  26. K. Pawelzik, H.G. Schuster: Phys. Rev. A 35, 481–484 (1987)

    Article  ADS  Google Scholar 

  27. S. Sato, M. Sano, Y. Sawada: Progr. Theor. Phys. 77, 1–5 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Wolf, J. Swift, H.L. Swinney, J. Vastano: Physica D 16, 285–317 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. G. Mayer-Kress (ed.): Dimensions and Entropies in Chaotic Systems (Springer, Berlin, Heidelberg 1986)

    MATH  Google Scholar 

  30. I.V. Aranson, A.M. Reiman, V.G. Shekhov: “Measurement methods for correlation dimensions”, in Nonlinear Waves 2. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 29–33

    Google Scholar 

  31. A.M. Fraser, H.L. Swinney: Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. N.B. Abraham, A.M. Albano, B. Das et al.: Phys. Lett. A 114, 217–221 (1986)

    Article  ADS  Google Scholar 

  33. J. Theiler: Phys. Rev. A 36, 4456–4462 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  34. I. Dvorak, J. Klaschka: Phys. Lett. A 145, 225–231 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  35. V.S. Afraimovich, A.M. Reiman: “Dimensions and entropies in multi-dimensional systems”, in Nonlinear Waves 2. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 2–28

    Google Scholar 

  36. Y. Kuramoto: Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, Heidelberg 1984)

    Book  MATH  Google Scholar 

  37. P. Constantin, C. Foias, R. Temam: Attractors Representing Turbulent Flows (Mem. Amer. Math. Soc., Vol. 53, 1985)

    Google Scholar 

  38. C.R. Doering, J.D. Gibbon, D.D. Holm, B. Nicolaenko: Phys. Rev. Lett. 59, 2911–2914 (1987)

    Article  ADS  Google Scholar 

  39. C.R. Doering, J.D. Gibbon, D.D. Holm, B. Nicolaenko: Nonlinearity 1, 279–309 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. T.S. Akhromeyeva, S.P. Kurdyumov, G.G. Malinetskii, A.A. Samarskii: Phys. Rep. 176, 189–370 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  41. I.S. Aranson, A.V. Gaponov-Grekhov, M.I. Rabinovich: Zh. Eksp. Teor. Fiz. 89, 92–105 (1985)

    ADS  Google Scholar 

  42. I.S. Aranson, A.V. Gaponov-Grekhov, M.I. Rabinovich, I.P. Starobinets: Zh. Eksp. Teor. Fiz. 90, 1707–1718 (1986)

    MathSciNet  ADS  Google Scholar 

  43. A.V. Gaponov-Grekhov, M.I. Rabinovich: Radiophys. and Quantum Electron. 30, 93–102 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  44. M.I. Rabinovich: “Nonlinear dynamics and turbulence”, in Nonlinear Waves 2. Dynamics and Evolution, ed. by J. Engelbrecht, A.V. Gaponov-Grekhov, M.I. Rabinovich (Springer, Berlin, Heidelberg 1989) pp. 52–64

    Google Scholar 

  45. H. Haken: “Spatial and temporal pattern formed by systems far from equilibrium”, in Nonequilibrium Dynamics in Chemical Systems, ed. by C. Vidal, A. Pacault (Springer, Berlin, Heidelberg 1984) pp. 7–21

    Chapter  Google Scholar 

  46. A.V. Gaponov-Grekhov, M.I. Rabinovich: “Dynamic chaos in ensembles of structures and spatial development of turbulence in unbounded systems”, in Selforganization by Nonlinear Irreversible Processes, ed. by W. Ebeling, H. Ulbricht (Springer, Berlin, Heidelberg 1984) pp. 37–46

    Google Scholar 

  47. O.A. Druzhinin, A.S. Mikhailov: Phys. Lett. A 148, 429–433 (1990)

    Article  ADS  Google Scholar 

  48. K. Kaneko: Physica D 34, 1–41 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. L.A. Bunimovich, Ya.G. Sinai: Nonlinearity 1, 491–516 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. J.P. Crutchfield, K. Kaneko: Phys. Rev. Lett. 60, 2715–2718 (1988)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikhailov, A.S., Loskutov, A.Y. (1991). Spatio-Temporal Chaos. In: Foundations of Synergetics II. Springer Series in Synergetics, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97294-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97294-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97296-6

  • Online ISBN: 978-3-642-97294-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics