Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 51))

  • 196 Accesses

Abstract

Bistable media consist of elements that have two steady states which are stable under sufficiently small perturbations. Stronger perturbations can cause transitions between these states. The fundamental form of a pattern in bistable media is a trigger wave, which represents a propagating front of transition from one stationary state into the other. The propagation velocity of a flat front is uniquely determined by the properties of the bistable medium. To initiate a spreading wave of transition from a homogeneous steady state, one should create a local perturbation which exceeds a critical nucleus for the bistable medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Schlögl: Z. Phys. 253, 147 (1982)

    Google Scholar 

  2. V.A. Vasilev, Yu.M. Romanovskii, D.S. Chemavskii, V.G. Yakhno: Autowave Processes in Kinetic Systems (Reidel, Dordrecht 1986)

    Google Scholar 

  3. A.G. Merzhanov, E.N. Rumanov: Usp. Fiz. Nauk 151, 553–593 (1987)

    Article  Google Scholar 

  4. A.V. Gurevich, R.G. Mints: Usp. Fiz. Nauk 142, 61–98 (1984)

    Article  Google Scholar 

  5. R. Luther: Z. Elektrochemie 12, 596–600 (1906); reprinted in: J. Chem. Educ. 64, 740 (1987)

    Article  Google Scholar 

  6. P. Fisher: Ann. Eugenics 7, 335–367 (1937)

    Google Scholar 

  7. Ya.B. Zeldovich, D.A. Frank-Kamenetskii: Zh. Fiz. Khim. 12, 100–105 (1938)

    Google Scholar 

  8. Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze: Mathematical Theory of Combustion and Explosion (Consultants Bureau, New York 1985)

    Book  Google Scholar 

  9. G.H. Markstem: J. Aeronaut. Sci. 18, 199–207 (1951)

    Google Scholar 

  10. A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov: Bull. Mosk. Gos. Univ., Sekt. Matematika i Mekhanika 1, 1–26 (1937)

    Google Scholar 

  11. T.S. Akhromeyeva, S.P. Kurdyumov, G.G. Malinetskii, A.A. Samarskii: Phys. Rep. 176, 189–370 (1989)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikhailov, A.S. (1990). Bistable Media. In: Foundations of Synergetics I. Springer Series in Synergetics, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97269-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97269-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97271-3

  • Online ISBN: 978-3-642-97269-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics