Skip to main content

Part of the book series: Springer Series on Atoms + Plasmas ((SSAOPP,volume 6))

  • 353 Accesses

Abstract

In this chapter we will discuss the general principles of lasers and study the most important tunable lasers that are of primary spectroscopic interest. Since many tunable lasers are optically pumped by fixed-frequency lasers we will also describe the most useful types of such lasers. For a more thorough account of laser physics we refer the reader to standard textbooks [8.1–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Yariv: Introduction to Quantum Electronics, 2nd. ed. (Holt, Rinehart and Winston, New York 1976)

    Google Scholar 

  2. A. Yariv: Quantum Electronics, 3rd edn. (Wiley, New York 1989)

    Google Scholar 

  3. M. Sargent III, M.O. Scully, W.E. Lamb, Jr.: Laser Physics (Addison Wesley, London 1974)

    Google Scholar 

  4. O. Svelto: Principles of Lasers, 3rd edn. (Plenum, New York 1989)

    Google Scholar 

  5. A.E. Siegman: Lasers (University Science Books, Mill Valley, Calif. 1986)

    Google Scholar 

  6. H. Haken: Laser Theory (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  7. K. Shimoda: Introduction lo Laser Physics, 2nd. ed. Springer Ser. Opt. Sci., Vol.44 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  8. M. Young: Optics and Lasers, 3rd. ed. Springer Ser. Opt. Sci., Vol.5 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  9. M.J. Weber (ed.): CRC Handbook of Laser Science and Technology, Vols.1 and 2 (CRC Press, Boca Raton, FL 1982)

    Google Scholar 

  10. Laser Handbook, Vols.1 and 2, ed. by F.T. Arecchi, E.O. Schulz-Dubois (1972); Vol.3, ed. by M.L. Stitch (1979); Vol.4, ed. by M.L. Stitch, M. Bass (1985); Vol.5, ed. by M. Bass, M.L. Stitch (1986) (North-Holland, Amsterdam)

    Google Scholar 

  11. T.H. Maiman: Stimulated optical radiation in ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  12. A.L. Schawlow, C.H. Townes: Infrared and optical masers. Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  13. J.P. Gordon, H.J. Zeiger, Ch.H. Townes: The maser — new type of microwave amplifier, frequency standard and spectrometer. Phys. Rev. 99, 1264 (1955)

    Article  ADS  Google Scholar 

  14. C.H. Townes: In Nobel Lectures in Physics (Elsevier, Amsterdam 1972) Vol.4

    Google Scholar 

  15. N.G. Basov: In Nobel Lectures in Physics (Elsevier, Amsterdam 1972) Vol.4

    Google Scholar 

  16. A.M. Prokhorov: In Nobel Lectures in Physics (Elsevier, Amsterdam 1972) Vol.4

    Google Scholar 

  17. D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.H. Ceglio, A.U. Hazi, H. Medicki, B.J. Maowan, J.E. Trebes, B.L. Witten, E.M. Campbell, W. Hatcher, A.H. Hawryluk, R.L. Kaufmann, L.D. Pleasance, G. Rambach, J.H. Scoefield, G. Stone, T.A. Weaver: Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110 (1985)

    Article  ADS  Google Scholar 

  18. D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.H. Ceglio, A.U. Hazi, H. Medicki, B.J. Maowan, J.E. Trebes, B.L. Witten, E.M. Campbell, W. Hatcher, A.H. Hawryluk, R.L. Kaufmann, L.D. Pleasance, G. Rambach, J.H. Scoefield, G. Stone, T.A. Weaver J. Opt. Soc. Am. 4, 575 (1987)

    Article  Google Scholar 

  19. S. Suchewer, C.H. Skinner, M. Milchberg, C. Keane, D. Voorhees: Amplification of stimulated X-ray emission in a confined plasma column. Phys. Rev. Lett. 55, 1753 (1985)

    Article  ADS  Google Scholar 

  20. D.L. Matthews, R.R. Freeman (eds.): The generation of coherent XUV and soft X-ray radiation. J. Opt. Soc. Am. B4, 529–618 (1987) (feature issue)

    Google Scholar 

  21. D.L. Matthews, M.D. Rosen: Soft X-ray lasers. Sci. Am. 256/6, 60 (1988)

    Google Scholar 

  22. H. Kogelnik, T. Li: Laser beams and resonators. Proc. IEEE 54, 1312 (1966)

    Article  Google Scholar 

  23. H.K.V. Lotsch: The confocal resonator system. Optik 30, 1, 181, 217, 563 (1969/70)

    Google Scholar 

  24. G.D. Boyd, J.P. Gordon: Bell Syst. Tech. J. 40, 489 (1961)

    Google Scholar 

  25. G.D. Boyd, H. Kogelnik: Bell Syst. Tech. J. 41, 1347 (1962)

    Google Scholar 

  26. S. Svanberg: Lasers as probes for air and sea. Contemp. Phys. 21, 541 (1980)

    Article  ADS  Google Scholar 

  27. W. Koechner: Solid-State Laser Engineering, 2nd edn. Springer Ser. Opt. Sci., Vol.1 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  28. D.C. Brown: High-Peak-Power Nd:Glass Laser Systems, Springer Ser. Opt. Sci., Vol.25 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  29. A.A. Kaminskii: Laser Crystals, 2nd edn., Springer Ser. Opt. Sci., Vol.14 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  30. A.F. Gibson: Lasers for compression and fusion. Contemp. Phys. 23, 285 (1982)

    Article  ADS  Google Scholar 

  31. R.S. Craxton, R.L. Mrory, J.M. Sources: Progress in laser fusion. Sci. Am. 255/2, 60 (1986)

    Google Scholar 

  32. N.G. Basov, Yu. A. Zakharenkov, N.N. Zorev, G.V. Sklizkov, A.A. Rupasov, A.S. Shikanov: Heating and Compression of Thermonuclear Targets by Laser Beams (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  33. J.E. Eggleston, T.J. Kane, K. Kuhn, J. Unternahrer, R.L. Byer: The slab geometry laser. IEEE J. QE-20, 289 (1984)

    Article  Google Scholar 

  34. D. Findlay, D.W. Goodwin: The neodymium in YAG laser, in Advances in Quantum Electronics, ed. by D.W. Goodwin (Academic, London 1970) Vol.1

    Google Scholar 

  35. B. Zhou, T.J. Kane, G.J. Dixon, R.L. Byen Efficient, frequency-stable laserdiode-pumped NAG laser. Opt. Lett. 10, 62 (1985)

    Article  ADS  Google Scholar 

  36. A. Owyoung, G.R. Hadley, P. Esherick: Gain switching of a monolithic singlefrequency laser-diode-excited Nd:YAG laser. Opt. Lett. 10, 484 (1985)

    Article  ADS  Google Scholar 

  37. W.R. Trutna, D.K. Donald, M. Nazarathy: Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field. Opt. Lett. 12, 248 (1987)

    Article  ADS  Google Scholar 

  38. R.L. Byer, G.J. Dixon, T.J. Kane, W. Kozlovsky, B. Zhou: Frequency-doubled, laser diode pumped, miniature Nd:YAG oscillator — progress toward an all solid state sub-kilohertz linewidth coherent source, in Laser Spectroscopy VII, ed. by T.W. Hänsch, Y.R. Shen, Springer Ser. Opt. Sci., Vol.49 (Springer, Berlin, Heidelberg 1985) p.350

    Google Scholar 

  39. C.K. Rhodes (ed.): Excimer Lasers, 2nd. ed., Topics Appl. Phys., Vol.30 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  40. M.H.R. Hutchinson: Excimers and excimer lasers. Appl. Phys. 21, 15 (1980)

    Article  Google Scholar 

  41. C.K. Rhodes, H. Egger, H. Plummer (eds.): Excimer Lasers, Conf. Proc. Series No. 100 (Am. Inst. Phys., New York 1983)

    Google Scholar 

  42. A. Javan, W.R. Bennet, Jr., D.R. Herriott: Populadon inversion and continous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett. 6, 48 (1961)

    Article  Google Scholar 

  43. W.T. Silfvast, J.J. Macklin, O.R. Wood II: High-gain inner-shell photoionization laser in Cd vapor pumped by soft X-ray radiation from a laser produced plasma source. Opt. Lett. 8, 551 (1983)

    Article  ADS  Google Scholar 

  44. W.T. Silfvast, O.R. Wood II: Photoionization lasers pumped by broadband soft-X-ray flux from laser-produced plasmas. J. Opt. Soc. Am. 4, 609 (1987)

    ADS  Google Scholar 

  45. R.A. Lacy, A.C. Nilsson, R.L. Byer, W.T. Silfvast, O.R. Wood II, S. Svanberg: Photoionization-pumped gain at 185 nm in a laser-ablated indium plasma. J. Opt. Soc. Am. B 6, 1209 (1989)

    Article  ADS  Google Scholar 

  46. H.C. Kapteyn, R.W. Lee, R.W. Falcone: Observation of a short-wavelength laser pumped by Auger decay. Phys. Rev. Lett. 57, 2939 (1986)

    Article  ADS  Google Scholar 

  47. M.H. Sher, J.J. Macklin, J.F. Young, S.E. Harris: Saturation of the XeIII 109-nm laser using traveling-wave laser-produced-plasma excitation. Opt. Lett. 12, 891 (1987)

    Article  ADS  Google Scholar 

  48. C.C. Davis, T.A. King: Gaseous ion lasers, in Advances in Quantum Electronics, ed. by D.W. Goodwin (Academic, London 1975) Vol.3

    Google Scholar 

  49. S.D. Smith, R.B. Dennis, R.G. Harrison: The spin-flip Raman laser. Prog. Quant. Electr. 5, 205 (1977)

    Article  ADS  Google Scholar 

  50. M.J. Colles, C.R. Pigeon: Tunable lasers. Rep. Prog. Phys. 38, 329 (1975)

    Article  ADS  Google Scholar 

  51. A. Mooradian: Tunable infrared lasers. Rep. Prog. Phys. 42, 1533 (1979)

    Article  ADS  Google Scholar 

  52. J. White, L. Mollenauer (eds.): Tunable Lasers, Topics Appl. Phys., Vol.59 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  53. P.P. Sorokin, J.R. Lankard: Stimulated emission observed from an organic dye, chloro-aluminium phthalocyanine. IBM J. Res. Dev. 10, 306 (1966)

    Google Scholar 

  54. F.P. Schäfer, W. Smidt, J. Volze: Organic dye solution laser. Appl. Phys. Lett. 9, 306 (1966)

    Article  ADS  Google Scholar 

  55. B.H. Soffer, B.B. Marland: Continously tunable narrow-band organic dye laser. Appl. Phys. Lett. 10, 266 (1967)

    Article  ADS  Google Scholar 

  56. T.W. Hansch: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11,895 (1972)

    Article  ADS  Google Scholar 

  57. M.G. Littman, H.J. Metcalf: Spectrally narrow pulsed dye laser without beam expander. Appl. Opt. 25, 375 (1978)

    Article  Google Scholar 

  58. I. Shoshan, U. Oppenheim: The use of a diffraction grating as a beam expander in a dye laser cavity. Opt. Commun. 25, 375 (1978)

    Article  ADS  Google Scholar 

  59. M.G. Littman: Single-mode operation of grazing incidence pulsed dye laser. Opt. Lett. 3, 138 (1978)

    Article  ADS  Google Scholar 

  60. H.S. Saikan: Nitrogen laser pumped single mode dye laser. Appl. Phys. 17, 41 (1978)

    Article  ADS  Google Scholar 

  61. M.G. Littman: Single mode pulsed tunable dye laser. Appl. Opt. 23, 4465 (1984)

    Article  ADS  Google Scholar 

  62. R. Wallenstein, T.W. Hänsch: Powerful dye laser oscillator-amplifier system for high-resolution spectroscopy. Opt. Commun. 14, 353 (1975)

    Article  ADS  Google Scholar 

  63. R. Wallenstein, H. Zacharias: High-power narrowband pulsed dye laser oscillator-amplifier system. Opt. Commun. 32, 429 (1980)

    Article  ADS  Google Scholar 

  64. O.G. Peterson, S.A. Tuccio, B.B. Snavely: CW Operation of an organic dye solution laser. Appl. Phys. Lett. 17, 245 (1970)

    Article  ADS  Google Scholar 

  65. J. Evans: The birefringent filter. J. Opt. Soc. Am. 59, 229 (1949)

    Article  ADS  Google Scholar 

  66. F.P. Schäfer (ed.):Dye Lasers, 3rd edn. Topics Appl. Phys., Vol.1 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  67. T.F. Johnston: Tunable dye lasers, in Encyclopedia of Physical Science and Technology, Vol.14 (Academic, New York 1987)

    Google Scholar 

  68. T.F. Johnston, R.H. Brady, W. Proffitt: Powerful single-frequency ring dye laser spanning the visible spectrum. Appl. Opt. 21, 2307 (1982)

    Article  ADS  Google Scholar 

  69. M. Maeda: Laser Dyes (Academic, Orlando 1984)

    Google Scholar 

  70. K. Brackman: Lambdachrome Laser Dyes (Lambda Physik, Göttingen 1986)

    Google Scholar 

  71. L.F. Mollenauer: Tunable lasers, in [Ref.8.44, Chap.6]

    Google Scholar 

  72. L.F. Mollenauer: In [Ref.8.10, Vol.4, Chap.2]

    Google Scholar 

  73. R.L. Byer (ed.): Special issue on tunable solid state lasers. IEEE J. QE-21, 1567–1636 (1985)

    Google Scholar 

  74. B. Henderson, G.F. Imbusch: Optical processes in tunable transition-metal-ion lasers. Contemp. Phys. 29, 235 (1988)

    Article  ADS  Google Scholar 

  75. P. Hammerling, A.B. Budgor, A. Pinto (eds.):Tunable Solid-State Lasers, Springer Ser. Opt. Sci., Vol.47 (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  76. A.B. Budgor, L. Esterowitz, L.G. Dhazer (eds): Tunable Solid-State Lasers II, Springer Ser. Opt. Sci., Vol.52 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  77. D.C. Tyle: Carbon dioxide lasers, in Advances in Quantum Electronics, ed. by D.W. Goodwin (Academic, New York 1970) Vol.1

    Google Scholar 

  78. W.J. Witteman: The CO 2 Laser, Springer Ser. Opt. Sci., Vol.53 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  79. F. O’Neill, W.T. Whitney: A high-power tunable laser for the 9–12.5 µm spectral range. Appl. Phys. Lett. 31, 271 (1977)

    Article  Google Scholar 

  80. R. Beck, W. Englisch, K. Gürs: Table of Laser Lines in Gases and Vapors, 3rd. edn. Springer Ser. Opt. Sci., Vol.2 (Springer, Berlin, Heidelberg 1978)

    Google Scholar 

  81. R.M. Measures: Laser Remote Sensing: Fundamentals and Applications (Wiley, New York 1984)

    Google Scholar 

  82. H. Kressel, J.K. Buden: Semiconductor Lasers and Heterojunction LEDs (Academic, New York 1977)

    Google Scholar 

  83. H.C. Lasey, M.B. Panisch: Heterostructure Lasers I and II (Academic, New York 1978)

    Google Scholar 

  84. J.C. Camparo: The diode laser in atomic physics. Contemp. Phys. 26, 443 (1985)

    Article  ADS  Google Scholar 

  85. E.D. Hinkley, K.W. Nill, F.A. Blum: Infrared spectroscopy with tunable lasers, in Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976)

    Chapter  Google Scholar 

  86. R. Lang: Recent progress in semiconductor lasers, in Laser Spectroscopy VIII, ed. by W. Persson, S. Svanberg, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987) p. 434

    Google Scholar 

  87. T.F. Johnston, Jr., T.J. Johnston: Angle matched doubling in LiIO3 intracavity to a ring dye laser, in Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol.40 (Springer, Berlin, Heidelberg 1983) p. 417

    Google Scholar 

  88. B. Couillaud, L.A. Bloomfield, T.W. Hänsch: Generation of continous-wave radiation near 243 nm by sum frequency mixing in an external ring cavity. Opt. Lett. 8, 259 (1983)

    Article  ADS  Google Scholar 

  89. A.S. Pine: IR spectroscopy via difference-frequency generation, in Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Ser., Vol.7 (Springer, Berlin, Heidelberg 1977) p.376

    Google Scholar 

  90. S. Singe: In Handbook of Laser Science and Technology, ed. by M.J. Weber (CRC Press, Boca Raton, FL 1986) Vol.3

    Google Scholar 

  91. D.S. Chemla, J. Zyss (eds): Nonlinear Optical Properties of Organic Molecules and Crystals, Vols.1 and 2 (Academic, Orlando 1987)

    Google Scholar 

  92. R.C. Eckardt, Y.X. Fan, M.M. Fejer, W.J. Kozlovsky, C.N. Nabors, R.L. Byer, R.K. Route, R.S. Feigelson: Recent developments in nonlinear optical materials, in Laser Spectroscopy VIII, ed. by W. Persson, S. Svanberg, Springer Ser. Opt. Sci., Vol.55 (Springer, Bedin, Heidelberg 1987) p.426

    Google Scholar 

  93. S.E. Harris: Tunable optical parametric oscillators. Proc. IEEE 57, 2096 (1969)

    Article  Google Scholar 

  94. Y.X. Fan, R.L. Byen: Progress in optical parametric oscillators. SPIE 461, 27 (1984)

    ADS  Google Scholar 

  95. P.P. Sorokin, J.A. Armstrong, R.W. Dreyfus, R.T. Hodgeson, J.R. Lankard, L.H. Manganaro, J.J. Wynne: Generation of vacuum ultraviolet radiadon by nonlinear mixing in atomic and ionic vapors, in Laser Spectroscopy, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p.46

    Chapter  Google Scholar 

  96. J.F. Rentjes: Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York 1984)

    Google Scholar 

  97. W. Jamroz, B.P. Stoicheff: Generation of tunable coherent vacuum-ultraviolet radiation. Progress in Optics XX, 325 (North-Holland, Amsterdam 1983)

    Google Scholar 

  98. B. Ya. Zel’dovich, N.F. Pilipetsky, V.V. Shkunov:Principles of Phase Conjugation, Springer Ser. Opt. Sci., Vol.42 (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  99. V.V. Shkunov, B. Ya. Zel’dovich: Optical phase conjugation. Sci. Am. 253/6, 40

    Google Scholar 

  100. D.M. Pepper Applications of optical phase conjugation. Sci. Am. 254/1, 56

    Google Scholar 

  101. H.J. Eichler, P. Gunther, D.W. Pohl: Laser Induced Dynamic Gratings, Springer Ser. Opt. Sci., Vol.50 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  102. C.R. Vidal: Coherent VUV sources for high-resolution spectroscopy. Appl. Opt. 19, 3897 (1980).

    Article  ADS  Google Scholar 

  103. R. Hilbig, G. Hilber, A. Lago, B. Wolff, R. Wallenstein: Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases. Comments At. Mol. Phys. 18, 157 (1986)

    Google Scholar 

  104. R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein: Generation of coherent tunable VUV radiation, in Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol.40 (Springer, Heidelberg, Berlin 1983) p.387

    Google Scholar 

  105. G. Hilber, A. Lago, R. Wallenstein: Generation and application of coherent tunable VUV radiation at 60 to 200 nm, in Laser Spectroscopy VIII, ed. by W. Persson, S. Svanberg, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987) p.446

    Google Scholar 

  106. T.J. Mcllrath, R.R. Freeman (eds): Laser Techniques for Extreme Ultraviolet Spectroscopy, Conf. Proc. Series, No.90 (Am. Inst. Phys., New York 1982)

    Google Scholar 

  107. S.E. Harris, T.B. Lucatorto (eds.): Laser Techniques in the Extreme Ultraviolet, Conf. Proc. Series, No.1 19 (American Inst, of Physics, New York 1984)

    Google Scholar 

  108. D.T. Attwood, J. Bokor (eds.): Short Wavelength Coherent Radiation: Generation and Application, Conf. Proc. Series, No.147 (Am. Inst. Phys., New York 1986)

    Google Scholar 

  109. R.W. Falcone, J. Kirz (eds.): Short Wavelength Coherent Radiation: Generation and Applications (Opt. Soc. Am., Washington, DC 1988)

    Google Scholar 

  110. Yamanaka (ed.): Short-Wavelength Lasers, Springer Proc. Phys., Vol.30 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  111. V. Wilke, W. Smidt Tunable coherent radiation source covering a spectral range from 185 — 880 nm. Appl. Phys. 18, 177 (1979). See also Appl. Phys. 18, 235 (1979)

    Article  ADS  Google Scholar 

  112. J. Paisner, S. Hargrove: A tunable laser system for UV, visible, and IR regions, in Energy and Technology Review (Lawrence Livermore Nat’l Lab., Livermore 1979)

    Google Scholar 

  113. A.P. Hickman, J.A. Paisner, W.K. Bishel: Theory of multiwave propagation and frequency conversion in a Raman medium. Phys. Rev. A33, 1788 (1986)

    Article  ADS  Google Scholar 

  114. F. Moya, S.A.J. Druet, J.P. Taran: Rotation-vibaration spectroscopy of gases by coherent anti-Stokes Raman scattering: Application to concentration and temperature measurements, in Laser Spectroscopy, ed. by S. Haroche, J.C. Pebay Peyroula, T.W. Hänsch, S.E. Harris (Springer, Berlin, Heidelberg 1975)

    Google Scholar 

  115. M. Alden, H. Edner, S. Svanberg: Coherent anti-Stokes Raman spectroscopy (CARS) applied to combustion probing. Phys. Scripta 27, 29 (1983)

    Article  ADS  Google Scholar 

  116. A.C. Eckbreth: BOXCARS: Crossed beam phase-matched CARS generation in gases. Appl. Phys. Lett. 32, 421 (1978)

    Article  ADS  Google Scholar 

  117. N. Bloembergen: Nonlinear Optics, 3rd Pr. (Benjamin, New York 1977)

    Google Scholar 

  118. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)

    Google Scholar 

  119. M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics, Theoretical Concepts (Wiley, New York 1986)

    Google Scholar 

  120. V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  121. M.D. Levenson, S. Kano: Introduction to Nonlinear Spectroscopy, 2nd. edn. (Academic, New York 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svanberg, S. (1991). Lasers. In: Atomic and Molecular Spectroscopy. Springer Series on Atoms + Plasmas, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97258-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97258-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97260-7

  • Online ISBN: 978-3-642-97258-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics