Advertisement

Collective Modes: Inter-Landau Level

  • Tapash Chakraborty
  • Pekka Pietiläinen
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 85)

Abstract

In this chapter, we review some of the theoretical work on the magnetoplasmon dispersion. The effect of electron correlations on this mode has been studied in detail by Kallin and Halperin [5.1,2], for the case of completely filled Landau levels. There has been a considerable amount of experimental work done on the cyclotron resonance in two-dimensional electron systems. The effect of electron correlations on the magnetoplasmon modes might be useful in understanding the anomalous structure in the cyclotron resonance Une shape observed in Si-MOSFET’s and in GaAs-heterostructures [5.3–7]. For example, experimental observation of cyclotron resonance linewidth broadening and splitting at certain electron densities [5.6] has been attributed to coupling between the cyclotron mode and finite-wavelength magnetoplasmons. A full review of the experimental and theoretical work on this topic will take us beyond the scope of our present review however.1

Keywords

Landau Level Random Phase Approximation Lower Landau Level Single Mode Approximation Spin Wave Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    C. Kallin, B. I. Haiperin: Phys. Rev. B30, 5655 (1984)ADSGoogle Scholar
  2. 5.2
    C. Kallin, B. I. Haiperin: Phys. Rev. B31, 3635 (1985)ADSGoogle Scholar
  3. 5.3
    B. A. Wilson, S. J. Allen, D. C. Tsui: Phys. Rev. Lett. 44, 479 (1981)ADSCrossRefGoogle Scholar
  4. 5.4
    B. A. Wilson, S. J. Allen, D. C. Tsui: Phys. Rev. B24, 5887 (1981)ADSGoogle Scholar
  5. 5.5
    G. L. J. A. Rikken, H. W. Myron, P. Wyder, G. Weimann, W. Schlapp, R. E. Horstman, J. Wolter: J. Phys. C18, L175 (1985)ADSGoogle Scholar
  6. 5.6
    Z. Schlesinger, S. J. Allen, J. C. M. Hwang, P. M. Platzman, N. Tzoar: Phys. Rev. B30, 435 (1984)ADSGoogle Scholar
  7. 5.7
    Z. Schlesinger, W. I. Wang, A. H. MacDonald: Phys. Rev. Lett. 58, 73 (1987)ADSCrossRefGoogle Scholar
  8. 5.8
    W. Kohn: Phys. Rev. 123, 1242 (1961)ADSMATHCrossRefGoogle Scholar
  9. 5.9
    E. Batke, D. Heitman, J. P. Kotthaus, K. Ploog: Phys. Rev. Lett. 54, 2367 (1985)ADSCrossRefGoogle Scholar
  10. 5.10
    A. H. MacDonald: J. Phys. C18, 1003 (1985)ADSGoogle Scholar
  11. 5.11
    Yu. A. Bychkov, S. V. Iordanskii, G. M. Eliashberg: JETP Lett. 33, 143 (1981)ADSGoogle Scholar
  12. 5.12
    A. H. MacDonald, H. C. A. Oji, S. M. Girvin: Phys. Rev. Lett. 55, 2208 (1985)ADSCrossRefGoogle Scholar
  13. 5.13
    H. C. A. Oji, A. H. MacDonald: Phys. Rev. B33, 3810 (1986)ADSGoogle Scholar
  14. 5.14
    P. Pietiläinen, Tapash Chakraborty: Europhys. Lett. 5, 157 (1988)ADSCrossRefGoogle Scholar
  15. 5.15
    P. Pietiläinen: Dissertation, University of Oulu (1988);Google Scholar
  16. 5.15a
    P. Pietiläinen: Phys. Rev. B (15 August 1988).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Tapash Chakraborty
    • 1
  • Pekka Pietiläinen
    • 2
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany
  2. 2.Department of Theoretical PhysicsUniversity of OuluOulu 57Finland

Personalised recommendations