Numerical Integration

  • Erich W. Schmid
  • Gerhard Spitz
  • Wolfgang Lösch

Abstract

The problem of calculating an integral numerically occurs very often in physics. If it involves a one-dimensional integration, and if the integrand is a smooth function, then no difficulties arise with the personal computer. One discretises the integrand over an equidistant mesh and applies a simple rule of integration such as the trapezoidal rule or the Simpson Rule. The required accuracy is achieved by choice of a sufficiently small mesh width.

Keywords

Triad Cote 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    E. Isaacson, H.B. Keller: Analysis of Numerical Functions (John Wiley and Sons, Inc., New York 1966)Google Scholar
  2. 3.2
    A. Erdelyi, W. Magnus. F. Oberhettinger, F. Tricomi: Higher Transcendental Functions, Vols. 1 and 2 (McGraw-Hill, New York 1953)Google Scholar
  3. 3.3
    I.S. Gradshteyn, I.M. Ryzhik: Tables of Integrals, Series and Products, corrected and enlarged edition (Academic Press, New York 1980)Google Scholar
  4. 3.4
    M. Abramowitz, I.A. Stegun (eds.): Handbook of Mathematical Functions, 7th ed. (Dover Publications, New York 1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Erich W. Schmid
    • 1
  • Gerhard Spitz
    • 1
  • Wolfgang Lösch
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenFed. Rep. of Germany

Personalised recommendations