Advertisement

Mechanik des intakten Herzens

  • E. Bassenge

Zusammenfassung

Um eine adäquate Blutversorgung der Organe — je nach ihrem Aktivitätsgrad — zu gewährleisten, müssen Herzleistung und periphere Kreislauffunktionen in optimaler Weise aufeinander abgestimmt sein. Pumpaktivität des Herzens, Füllungszustand des Gefäßsystems und Gefäßtonus bzw. Wandspannungen in den einzelnen Gefäßsegmenten müssen dauernd erfaßt und gegebenenfalls berichtigt werden. Dazu steht eine breite Palette nervös-humoraler Regulationsmechanismen zur Verfügung, die fortlaufend Informationen aus Presso- und Volumenrezeptoren beziehen (Übersicht bei Gauer 1972; Koepchen 1972).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbott, B.C., Gordon, D.G.: A commentary on muscle mechanics. Circulât. Res. 360, 1 (1975).Google Scholar
  2. Abel, R.M., Reis, R.L.: Effects of coronary blood flow and perfusion pressure on left ventricular contractility in dogs. Circulât. Res. 27, 961 (1970).PubMedGoogle Scholar
  3. Ahn, J., Apstein, C.S., Hood, W.B.: Erectile properties of the left ventricle: Direct effect of coronary perfusion pressure on diastolic wall stiffness and thickness. Clin. Res. 25, 201 A (1977).Google Scholar
  4. Amende, I., Coltart, P. J., Kreayenbuehl, H.P., Rutishauser, W.: Left ventricular contraction and relaxation in patients with coronary heart disease. Europ. J. Cardiol. 3, 37 (1975).Google Scholar
  5. Anderson, P.A.W., Manring A. J., Serwer, G.A., Benson, D.W., Edwards, S.B., Armstrong, B.E., Sterba, R.J., Floyd, R.D.: The force-interval relationship of the left ventricle. Circulation 60, 334 (1979).PubMedGoogle Scholar
  6. Anrep, G. von: Studies in cardiovascular regulation. Lane medical lectures. Stanf. Univ. Publ. med. Sci. 3, 205 (1936). Konstant bleibender arterieller Sättigung nimmt die coronarvenöse 02-Sättigung zu Beginn der 3 verschiedenen Laufbandbelastungen fortlaufend ab, d. h. die myokardiale 02-Extraktion nimmt belastungsabhängig und zeitabhängig zu. (Nach Von Restorff et al. 1977)Google Scholar
  7. Antoni, H., Jacob, R., Kaufmann, R.: Mechanische Reaktionen des Frosch- und Säugetiermyocards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch. ges. Physiol. 306, 33 (1969).CrossRefGoogle Scholar
  8. Arnold, G., Kosche, F., Miessner, E., Neilzert, A., Lochner, W.: The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Arch. ges. Physiol. 299, 339 (1968).CrossRefGoogle Scholar
  9. Bassenge, E.: Direct autonomic control of the coronary system. Pflügers Arch. ges. Physiol. 373, R 6 (1978).Google Scholar
  10. Bassenge, E., Holtz, J., Von Restorff, W.: What is the physiological significance of sympathetic coronary innervation? In: Primary and secondary angina pectoris ( Maseri, Klassen, Lesch, eds.). New York: Grune & Stratton 1978.Google Scholar
  11. Bassenge, E.: Physiologie der Koronardurchblutung. In: Handbuch der inneren Medizin; Band IX/3: Koronarer- krankungen ( Roskamm, H., Hrsg.) Berlin-Heidelberg-New York-Tokyo: Springer 1984, S. 1–48.Google Scholar
  12. Bassenge, E., Busse, R.: Endothelial modulation of coronary tone. Prog. Cardiovasc. Dis. 30, (1988, in press).Google Scholar
  13. Bauer, R.D., Busse, R.: The arterial system. Dynamics, control theory and regulation. Berlin-Heidelberg-New York: Springer 1978.Google Scholar
  14. Bauereisen, E., Peiper, U., Weigand, K.H.: Die diastolische Saugwirkung der Herzkammern. Z. Kreisl.-Forsch. 49, 195 (1960).Google Scholar
  15. Bauereisen, E., Hauck, G., Jacob, R., Peiper, U.: Enddiastolische Druck-Volumen-Relationen und Arbeitsdiagramme des intakten Herzens im natürlichen Kreislauf. Pflügers Arch, ges. Physiol. 281, 216 (1964).CrossRefGoogle Scholar
  16. Bayliss, W.M.: On the local reactions of the arterial wall to changes in internal pressure. J. Physiol. (London) 28, 220 (1902).Google Scholar
  17. Bevegard, B.S., Sheperd, J.T.: Regulation of circulation during exercise. Physiol. Rev. 47, 178 (1967).PubMedGoogle Scholar
  18. Bevegard, S., Holmgren, A., Jonsson, B.: The effect of body position on the circulation at rest and during exercise, with special reference to the influence on stroke volume. Acta physiol. scand. 49, 279 (1960).PubMedCrossRefGoogle Scholar
  19. Bing, R.J., Hammond, M., Handelsmann, J.C., Powers, S.R., Spencer, F., Eckenhoff, J.B., Goodale, W.T., Hafkenschiel, J.M., Kety, S.S.: The measurement of coronary blood flow, oxygen consumption and efficiency of the left ventricle in man. Amer. Heart J. 38, 1 (1949).PubMedCrossRefGoogle Scholar
  20. Bing, O.H.L., Brooks, W.W., Messer, J.V.: Heart muscle viability following hypoxia: protective effect of acidosis. Science 1980, 1297 - 1298 (1973).CrossRefGoogle Scholar
  21. Blanchard, E.M., Solaro, R.J.: Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circulât. Res. 55, 382 - 391 (1984).PubMedGoogle Scholar
  22. Blix, M.: Die Länge und Spannung des Muskels. Skand. Arch. Physiol. 3, 295 (1892).Google Scholar
  23. Bloom, W. L., Ferris, E. B.: Negative ventricular diastolic pressure in beating heart studied in vitro and in vivo. Proc. Soc. exp. Biol. Med. 98, 451 (1956).Google Scholar
  24. Böhme, W.: Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn. Physiol. 38, 251 (1936).Google Scholar
  25. Bowditsch, H.P.: Über die Eigentümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber. sächs. ges. Akad. Wiss. 23, 652 (1871).Google Scholar
  26. Brecher, G.A.: Venous return. London: Grüne & Stratton 1956.Google Scholar
  27. Brecher, G.A.: Critical review of recent work on ventricular diastolic suction. Circulât. Res. 6, 554 (1958).PubMedGoogle Scholar
  28. Brecher, G.A., Galletti, P.M.: Functional anatomy of cardiac pumping. In: Handbook of physiology, Circulation II ( Hamilton, W.F., Dow, P., eds.). Washington: Amer. Physiol. Soc. 1963.Google Scholar
  29. Bretschneider, H.J., Hellige, G.: Pathophysiologie der Ventrikelkontraktion - Kontraktilität, Inotrophie, Suffizienzgrad und Arbeitsökonomie des Herzens. Verh. dtsch. Ges. Rreisl.-Forsch. 42, 14 (1976).Google Scholar
  30. Bretschneider, H.J., Cott, L., Hilgert, G., Pobst, R., Rau, G.: Gaschromatographische Trennung und Analyse von Ar-gon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh. dtsch. Ges. Kreisl.-Forsch. 32, 267 (1966).Google Scholar
  31. Brutsaert, D.L., Rademakers, F.E., Sys, S.U., Gillebert, T.C., Housemans, P.R.: Analysis of relaxation in the evaluation of ventricular function of the heart. Prog. Cardiovasc. Dis. 28, 143–163 (1985).PubMedCrossRefGoogle Scholar
  32. Chidsey, C.A., Kaiser, G.A., Sonnenblick, E.H., Spann, J.F.: Cardiac norepinephrine stores in experimental heart failure in the dog. J. clin. Invest. 43, 2386 (1964).PubMedCrossRefGoogle Scholar
  33. Cohn, P.F., Liedtke, A.J., Serur, J., Sonnenblick, E.H., Urschel, Ch.W.: Maximal rate of pressure fall (peak, negative dP/dt) during ventricular relaxation. Cardiovasc. Res. 6, 263 (1972).PubMedCrossRefGoogle Scholar
  34. Cranefield, P.F.: The present status of paired pulse stimulation and post-extrasystolic potentiation in the heart. Bull. N. Y. Acad. Med. 41, 736 (1965).PubMedGoogle Scholar
  35. Doll, E., Keul, J., Steim, H., Maiwald, Ch., Reindell, H.: Über den Stoffwechsel des menschlichen Herzes. II. Sauerstoff- und Kohlensäuredruck, pH, Standardbicarbonat und base excess im coronarvenösen Blut in Ruhe, während und nach körperlicher Arbeit. Pflügers Arch. ges. Physiol. 282, 28 (1965).CrossRefGoogle Scholar
  36. Feigl, E.O.: Sympathetic control of coronary circulation. Circulat. Res. 20, 262 (1967).PubMedGoogle Scholar
  37. Feigl, E. O.: Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circulât. Res. 37, 88 (1975).PubMedGoogle Scholar
  38. Frank, O.: Zur Dynamik des Herzmuskels. Z. Biol. 32, 370 (1895).Google Scholar
  39. Franklin, D.L., Schlegel, W., Rushmer, R.F.: Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134, 564 (1961).PubMedCrossRefGoogle Scholar
  40. Frederiksen, J.W., Weiss, H.L., Weisfeldt, M.L.: Time constant of isovolumic pressure fall: determinants in the working left ventricle. Amer. J. Physiol. 235, H701–H706 (1978).PubMedGoogle Scholar
  41. Gaasch, W. H., Bing, O. H. L., Franklin, A., Rhodes, D., Bernard, S.A., Weintraub, R.M.: The influence of acute alterations in coronary blood flow on left ventricular diastolic compliance and wall thickness. Europ. J. Cardiol. 7, Suppl., 147 (1978).Google Scholar
  42. Gamble, W.J., Lafarge, C.G., Fyler, D.C., Weisul, J., Monro, R. G.: Regional coronary venous oxygen saturations and myocardial oxygen tension following abrupt changes in ventricular pressure in the isolated dog heart. Circulât. Res. 34, 672 (1974).PubMedGoogle Scholar
  43. Gauer, O.: Volume changes of the left ventricle during blood polling and exercise in intact animals. Physiol. Rev. 35, 143 (1955).PubMedGoogle Scholar
  44. Gauer, O.: Kreislauf des Blutes. In: Physiologie des Menschen (Gauer, O., Kramer, K., Jung, R., Hrsg.), Bd. 3. München-Berlin-Wien: Urban & Schwarzenberg 1972.Google Scholar
  45. Gibson, D.G., Greenbaum, R., Marier, D.L., Brown, D.J.: Clinical significance of early diastolic changes in left ventricular wall thickness. Europ. Heart J. 1 (Suppl A), 157–163 (1980).Google Scholar
  46. Gollwitzer-Meier, K., Kramer, K., Krüger, E.: Zur Verschiedenheit der Herzenergetik und Herzdynamik bei Druck- und Volumenleistung. Pflügers Arch. ges. Physiol 237, 68 (1936).CrossRefGoogle Scholar
  47. Gregg, D. E.: The heart as a pump. In: The physiological basis of medical practice ( Best, C. H., Taylor, N. B., eds.). Baltimore: Williams & Wilkins 1961.Google Scholar
  48. Gregg, D. E.: Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circulât. Res. 13, 497 (1963).PubMedGoogle Scholar
  49. Gregg, D.E., Khouri, E.M., Rayford, E.R.: Systemic and coronary energetics in the resting unanesthetized dog. Circulât. Res. 16, 102 (1965).Google Scholar
  50. Gülch, B.W., Jacob, R.: The effect of sudden stretches on length-tension and force velocity relation of mammalian cardiac muscle. Pflügers Arch. ges. Physiol. 357, 335 (1975).CrossRefGoogle Scholar
  51. Guyton, A.C., Cowley, A.W.: Cardiovascular Physiology II. In: International Review of Physiology. Baltimore: University Park Press 9, (1976).Google Scholar
  52. Hamilton, W. F.: Role of the Starling concept in regulation of the normal circulation. Physiol. Rev. 35, 161 (1955).PubMedGoogle Scholar
  53. Hasselbach, W., Makinose, M.: Über den Mechanismus des Calciumtransportes durch die Membranen des sarcoplasmatischen Reticulums. Biochem. Z. 339, 94 (1963).PubMedGoogle Scholar
  54. Heiss, H.W., Barmeyer, J., Wink, K., Hell, G., Cerny, F.J., Keul, J., Reindell, H.: Studies on the regulation of myocardial blood flow in man. Basic Res. Cardiol. 71, 658 (1976).PubMedCrossRefGoogle Scholar
  55. Henke (1872), zit. bei: Physiologie des Menschen (Landois, L., Hrsg.). Berlin-Wien: Urban & Schwarzenberg 1900, und bei: Böhme, W.: Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn. Physiol 38, 251 (1936).Google Scholar
  56. Herzig, J. W.: A cross-bridge model for inotropism as revealed by stiffness measurements in cardiac muscle. Basic Res. Cardiol. 73, 273–286 (1978).PubMedCrossRefGoogle Scholar
  57. Herzig, J.W.: Contractile proteins: possible targets for drug action. Trends Pharmacol. Sci. 5, 296–300 (1984).CrossRefGoogle Scholar
  58. Hibberd, M.G., Jewell, B.R.: Calcium- and length-dependent force production in rat ventricular muscle. J. Physiol. (London) 329, 527–540 (1982).Google Scholar
  59. Higgins, C.B., Vatner, S.F., Braunwald, E.: Parasympathetic control of the heart. Pharmacol. Rev. 25, 119 (1973).PubMedGoogle Scholar
  60. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. roy. Soc. B. 126, 136 (1938).CrossRefGoogle Scholar
  61. Hirota, Y.: A clinical study of left ventricular relaxation. Circulation 62, 756–763 (1980).PubMedGoogle Scholar
  62. Hoffman, B.F., Cranefield, P.F.: Electrophysiology of the heart, New York-Toronto-London: Mc Graw-Hill 1960.Google Scholar
  63. Holtz, J., Bassenge, E., Von Restorff, W., Mayer, E.: Transmural differences in myocardial blood flow and in coronary dilatory capacity in hemodiluted conscious dogs. Basic. Res. Cardiol. 71, 36 (1976).PubMedCrossRefGoogle Scholar
  64. Holtz, J., Mayer, E., Bassenge, E.: Demonstration of alpha- adrenergic coronary control in different layers of canine myocardium by regional myocardial sympathectomy. Pflü-gers Arch. ges. Physiol. 372, 187 (1977).CrossRefGoogle Scholar
  65. Holubarsch, C, Jacob, R.: Die “Compliance” des Herzens. Methodische Grundlagen und Grenzen für eine Bestimmung der Dehnbarkeit von Gesamtventrikel und Myokardgewebe. Med. Welt 31, 136–144 (1980).PubMedGoogle Scholar
  66. Holubarsch, C., Alpert, N.R., Goulette, R., Mulieri, L.A.: Heat production during hypoxic contracture of rat myocardium. Circulât. Res. 51, 777–786 (1982).PubMedGoogle Scholar
  67. Holubarsch, C., Hasenfuss, G., Blanchard, E., Alpert, N.R., Mulieri, L.A., Just, H.: Myothermal economy of rat myocardium, chronic adaptation versus acute inotropism. Basic Res. Cardiol. 81 (Suppl. 1), 95–102 (1986).PubMedGoogle Scholar
  68. Honig, C. R., Bourdeau-Martini, J.: Role of 02 in control of the coronary capillary reserve. Advanc. exp. Med. Biol. 39, 55 (1973).Google Scholar
  69. Horwitz, L.D., Bishop, V.S.: Left ventricular pressure-dimen-sion relationships in the conscious dog. Cardiovasc. Res. 6, 163 (1972).PubMedCrossRefGoogle Scholar
  70. Horwitz, L.D., Atkins, J.M., Leshin, S.J.: Role of the Frank-Starling mechanism in exercise. Circulât. Res. 31, 868 (1972).PubMedGoogle Scholar
  71. Iizuka, M., Takabatake, Y., Serizawa, T., Nurao, S.: Distribution of regional wall contraction-relaxation process as the determinant of the left ventricular pressure fall curve. Europ. Heart J. 1 (Suppl A), 173–174 (1980).Google Scholar
  72. Jacob, R., Gülch, R., Kissling, G., Raff, U.: Muskelphysiologische Grundlagen für die Beurteilung der Leistungsfähigkeit des Herzens. Z. Ges. inn. Med. 28, 1 (1973).PubMedGoogle Scholar
  73. Jewell, B.R.: A reexamination of the influence of muscle length on myocardial performance. Circulât. Res. 40, 221 (1977).PubMedGoogle Scholar
  74. Johnson, V., Katz, L.N.: Tone in the mammalian ventricle. Amer. J. Physiol. 118, 26 (1937).Google Scholar
  75. Kammermeier, H.: New aspects concerning: systolic impuls, displacement of the AV-ring, kinetic energy of the heart, Pflügers Arch. ges. Physiol 365, Suppl., R 5 (1976).Google Scholar
  76. Katz, A.M.: Excitation-contraction coupling. In: Physiology of the heart (Katz, A.M., ed.), p 137. New York: Raven 1977.Google Scholar
  77. Kety, S. S., Schmidt, C. F.: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J. clin. Invest. 27, 476 (1948).CrossRefGoogle Scholar
  78. Kissling, G., Reuter, K., Sieber, G., Nguyen-Duong, H., Jacob, R.: Negative Inotropie von endogenem Acetylcholin beim Katzen- und Hühnerventrikelmyokard. Pflügers Arch, ges. Physiol. 333, 35 (1972).CrossRefGoogle Scholar
  79. Kjellberg, S.R., Lönroth, H., Ruhde, U., Sjöstrand, T.: The relationship between the heart volume and the blood volume and its physiological and pathological variability. Acta. med. scand. 140, 446 (1951).PubMedCrossRefGoogle Scholar
  80. Klensch, H., Eger, W.: Ein neues Verfahren der physikalischen Schlagvolumenbestimmung (Qualitative Ballistographie). Pflügers Arch. ges. Physiol. 263, 459 (1956).CrossRefGoogle Scholar
  81. Koch-Weser, J., Blinks, J.R.: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15, 601 (1963).PubMedGoogle Scholar
  82. Koepchen, H.P.: Kreislaufregulation. In: Physiologie des Menschen. (Gauer, O., Kramer, K., Jung, R., Hrsg.), Bd. 3. München-Berlin-Wien: Urban & Schwarzenberg 1972.Google Scholar
  83. Kolin, A.: An electromagnetic flowmeter: Principles of the method and its application to blood flow measurements. Proc. Soc. exp. Biol. Med. 35, 53 (1936).Google Scholar
  84. Kramer, K., Luft, U.C.: Mobilization of red cells and oxygen from the spleen in severe hypoxia. Amer. J. Physiol 165, 215 (1951).PubMedGoogle Scholar
  85. Krayenbühl, H.P.: Dynamik und Kontraktilität des linken Ventrikels. Bibl. cardiol. (Basel) 23, 1 (1969).Google Scholar
  86. Kübler, W., Katz, A.M.: Mechanism of early “pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Amer. J. Cardiol. 40, 467–471 (1977).PubMedCrossRefGoogle Scholar
  87. Lecarpentier, Y.C., Chuck, L.H.S., Housmans, P.R., Declerck, N.M., Brutsaert, D.L.: Nature of load-dependence of relaxation in cardiac muscle. Amer. J. Physiol. 237, H455–H460 (1979).PubMedGoogle Scholar
  88. Levy, M. N.: The cardiac and vascular factors that determine systemic blood flow. Circulât. Res. 44, 739 (1979).PubMedGoogle Scholar
  89. Lorell, B.H., Paulus, W.J., Grossman, W., Wynne, J., Cohn, P. F.: Modification of abnormal left ventricular diastolic properties by nifedipine in patients with hypertrophic cardiomyopathy. Circulation 65, 499–507 (1982).PubMedCrossRefGoogle Scholar
  90. Lysholm, E., Nylin, G., Quarna, K.: The relation between the heart volume and stroke volume under physiological and pathological conditions. Acta, radiol. (Stockh.) 15, 237 (1934).CrossRefGoogle Scholar
  91. Mann, T., Goldberg, S., Mudge, G.H. jr., Grossman, W.: Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation 59, 14 (1979)PubMedGoogle Scholar
  92. Martin, G., Gimeno, J. V., Ramirez, A., Cosin, J.: A digitizated analysis of isovolumic pressure fall. Europ. Heart J. 1 (Suppl A), 181 (1980).Google Scholar
  93. Mason, D.T.: Vasodilator and inotropic therapy of heart failure. Symposium perspective. Amer. J. Med. 65, 101 (1978).PubMedCrossRefGoogle Scholar
  94. Mclaurin, L.P., Rolett, E.L., Grossman, W.: Impaired left ventricular relaxation during pacing-induced ischemia. Amer. J. Cardiol. 32, 751 (1973).PubMedCrossRefGoogle Scholar
  95. Millard, R.W., Higgins, C.B., Franklin, D., Vatner, S.F.: Regulation of the renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circulât. Res. 31, 881 (1972).PubMedGoogle Scholar
  96. Milnor, W.R.: Arterial impedance as ventricular afterload. Circulât. Res. 36, 565 (1975).PubMedGoogle Scholar
  97. Monroe, R.G., Gamble, W.J., Lafarge, C.G., Kumar, A.E., Stark, J., Sanders, G.L., Phornphutkul, C., Davis, M.: The Anrep effect reconsidered. J. clin. Invest. 51, 2573 (1972).PubMedCrossRefGoogle Scholar
  98. Morad, M., Goldman, Y.: Excitation-contraction coupling in heart muscle: membrane control of development of tension. Progr. Biophys. mol. Biol. 27, 257 (1973).CrossRefGoogle Scholar
  99. Morad, M., Rolett, E.: Relaxing effect of catecholamines on mammalian heart. J. Physiol. (Lond.) 244, 537 (1972).Google Scholar
  100. Nayler, W.G., Berry, D.: Effect of drugs on the cyclic adenosine 3′5′ monophosphate dependent protein kinase-induced stimulation of calcium uptake by cardiac microsomal fractions. J. mol. cell. Cardiol. 7, 387 (1975).PubMedCrossRefGoogle Scholar
  101. Nayler, W.G., Williams, A.: Relaxation in heart muscle: some morphological and biochemical considerations. Europ. J. Cardiol. 7 Suppl., 35 (1978).Google Scholar
  102. O’Rourke, M.F.: Steady and pulsatile energy losses in the systemic circulation under normal conditions and in simulated arterial disease. Cardiovasc. Res. 1, 312 (1967).Google Scholar
  103. Papapietro, S.E., Coghlan, H.C., Zissermann, D., Russell, R.O., Rackley, C.E., Rogers, W.J.: Impaired maximal rate of left ventricular relaxation in patients with coronary artery disease and left ventricular dysfunction. Circulation 59, 984–991 (1979).PubMedGoogle Scholar
  104. Parmley, W.W., Sonnenblick, E.H.: Relationship between mechanics of contraction and relaxation in mammalian cardiac muscle. Amer. J. Physiol. 216, 1084 (1969).PubMedGoogle Scholar
  105. Parsons, C., Porter, K.R.: Muscle relaxation: evidence for an intrafibrillar restoring force in vertebrate striated muscle. Science 153, 426 (1966).PubMedCrossRefGoogle Scholar
  106. Patterson, S.W., Piper, H., Srarling, E.H.: Regulation of the heart beat. J. Physiol. (Lond.) 48, 465 (1914).Google Scholar
  107. Peterson, K.L., Skloven, D., Ludbrook, Ph., Uther, J.B., Ross, J. jr.: Comparison of isovolumic and ejection phase indices of myocardial performance in man. Circulation 49, 1088 (1974).PubMedGoogle Scholar
  108. Porter, W.T.: On the results of ligation of the coronary arteries. J. Physiol. (Lond.) 15, 121 (1894).Google Scholar
  109. Pouleur, H., Covell, J. W., Ross, J. jr.: Effects of alterations in aortic input impedance on the force-velocity-length relationship in the intact canine heart. Circulât. Res. 45, 126 (1979).PubMedGoogle Scholar
  110. Raff, G. L., Glanz, S. A.: Volume loading slowsJeft ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circulât. Res. 48, 813–824 (1981).PubMedGoogle Scholar
  111. Reichel, H.: Die Herzdynamik. Verh. dtsch. Ges. Kreisl.-Forsch. 22, 3 (1965).Google Scholar
  112. Reindell, H.: Beitrag der Klinik zur Dynamik des Herzens. Verh. dtsch. Ges. inn. Med. 70, 100 (1964).PubMedGoogle Scholar
  113. Reindell, H., Klepzig, H., Steim, H., Musshoff, K., Roskamm, H., Schildge, E.: Herz, Kreislaufkrankheiten und Sport. München: Barth 1960.Google Scholar
  114. Reiter, M.: Die Entstehung von “Nachkontraktionen” im Herzmuskel unter Einwirkung von Calcium und von Digitalisglykosiden in Abhängigkeit von der Reizfrequenz. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 242, 497 (1962).Google Scholar
  115. Von Restorff, W., Holtz, J., Bassenge, E.: Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflügers Arch, ges. Physiol. 372, 181 (1977).Google Scholar
  116. Richards, D.W.: Discussion of Starlings law of the heart. Physiol. Rev. 35, 156 (1955).PubMedGoogle Scholar
  117. Robinson, G.A., Butcher, W.R., Ooye, I., Morgan, H.E., Sutherland, E. W.: The effect of epinephrine on adenosine 3′: 5′ phosphate levels in the isolated perfused rat heart. Mol. Pharmacol. 1, 168 (1965).Google Scholar
  118. Ross, J. jr.: Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog. Cardiovasc. Dis. 18, 255 (1976).PubMedCrossRefGoogle Scholar
  119. Ross, J.: Acute displacement of the diastolic pressure-volume curve of the left ventricle: Role of the pericardium and the right ventricle. Circulation 59, 32 (1979).PubMedGoogle Scholar
  120. Rushmer, R.F.: Applicability of Starlings law of the heart to intact unanesthetised animals. Physiol. Rev. 35, 138 (1955).PubMedGoogle Scholar
  121. Rushmer, R.F.: Functional anatomy of cardiac contraction. Cardiovascular dynamics, 3rd ed. Philadelphia-London: Saunders 1970.Google Scholar
  122. Rutishauser, W., Wirz, P., Gander, M., Noseda, G.: Vergleich der Herzdynamik bei Frequenzsteigerung unter Arbeitsbelastung und elektrischer Stimulation. In: Herzinsuffizienz (Wollheim, E., Schneider, K.W., Hrsg.), S. 429. Stuttgart: Thieme 1968.Google Scholar
  123. Sabbah, H. N., Stein, P. D.: Negative diastolic pressure in the intact canine right ventricle. Evidence of diastolic suction. Circulât. Res. 49, 108–113 (1981).PubMedGoogle Scholar
  124. Salisbury, P. F., Cross, C. E., Rieben, P. A.: Influence of coronary artery pressure upon myocardial elasticity. Circulât. Res. 8, 794 (1960).PubMedGoogle Scholar
  125. Salisbury, P.F., Cross, C.E., Rieben, P.A.: Intramyocardial pressure and strength of left ventricular contraction. Circulât. Res. 10, 608 (1962).Google Scholar
  126. Sarnoff, S.J., Mitchell, J.H., Gilmore, J. P., Remensnyder, J. P.: Homeometric autoregulation in the heart. Circulât. Res. 8, 1077 (1960).PubMedGoogle Scholar
  127. Schmid-Schönbein, H.: Microrheology of erythrocytes and thrombocytes. In: Handbuch der allgemeinen Pathologie, Bd.7, III. Heidelberg-Berlin-New York: Springer 1977.Google Scholar
  128. Schwegler, M., Reutter, K., Sieber, G., Jacob, R.: Noncompetitive catecholamine-antagonism of acetylcholine on the sympathectomized mammalian ventricular myocardium. Basic Res. Cardiol. 71, 407 (1976).PubMedCrossRefGoogle Scholar
  129. Serizawa, T., Vogel, W.M., Apstein, C.S., Grossman, W.: Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia: role of myocardial oxygen supply-demand imbalance. J. clin. Invest. 68, 91–101 (1981).PubMedCrossRefGoogle Scholar
  130. Siegel, J.H., Sonnenblick, E.H.: Isometric time-tension relationship as an index of myocardial contractility. Circulât. Res. 12, 597 (1963).PubMedGoogle Scholar
  131. Sonnenblick, E. H., Braunwald, E., Williams, J. F. jr., Gick, G.: Effects of exercise on myocardial force-velocity relations in intact unanesthetized man: Relative roles of changes in heart rate, sympathetic activity, and ventricular dimensions. J. clin. Invest. 44, 2051 (1965).PubMedCrossRefGoogle Scholar
  132. Sonnenblick, E.H., Parmley, W.W., Urschel, C.W.: The contractile state of the heart as expressed by force-velocity relations. Amer. J. Cardiol. 23, 488 (1969).PubMedCrossRefGoogle Scholar
  133. Starling, E.H.: The Linacre lecture on the law of the heart. New York-London: Longmans, Green & Co 1918.Google Scholar
  134. Straub, H.: Dynamik des Säugetierherzens. Dtsch. Arch. klin. Med. 115, 531 (1914a).Google Scholar
  135. Straub, H.: Dynamik des Säugetierherzens. Dtsch. Arch. klin. Med. 116, 27 (1914b).Google Scholar
  136. Streeter, D.D. jr., Spotnitz, H.M., Patel, D.J., Ross, J. jr., Sonnenblick, E. H.: Fiber orientation in the canine left ventricle during diastole and systole. Circulat. Res. 24, 339 (1969).Google Scholar
  137. Tada, M., Kirchberger, M.A., Katz, A.M.: Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3: 5-monophosphate-dependent protein kinase. J. biol. Chem. 250, 2640–2647 (1975).PubMedGoogle Scholar
  138. Tillmanns, H., Kübler, W.: What happens in the microcirculation? In: Therapeutic approaches to myocardial infarct size limitation (Hearse, D.J., Yellon, D.M., eds.), S. 107–124. New York: Raven Press 1984.Google Scholar
  139. Trautwein, W.: Erregungsphysiologie des Herzens. In: Phy-siologie des Menschen (Gauer, O., Kramer, K., Jung, R., Hrsg.), Bd. 3. München-Berlin-Wien: Urban & Schwarzenberg 1972.Google Scholar
  140. Tsien, R. W.: Cyclic AMP and contractile activity in the heart. Adv. cyclic Nucl. Res. 8, 363 (1977).Google Scholar
  141. Tyberg, J.V., Misbach, G.A., Glantz, S.A., Moores, W.Y., Parmley, W. W.: A mechanism for shifts in the diastolic, left ventricular, pressure-volume curve: The role of the pericardium. Europ. J. Cardiol. 7, Suppl., 163 (1978).Google Scholar
  142. Ullrich, K.J., Riecker, G., Kramer, K.: Das Druckvolumen-diagramm des Warmblüterherzens. Pflügers Arch. ges. Physiol. 259, 181 (1954).Google Scholar
  143. Vatner, S.F., Mcritchie, R.J.: Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circulat. Res. 37, 664 (1975).PubMedGoogle Scholar
  144. Vatner, S.F., Monroe, R.G., Mcritchie, R.J.: Effects of anesthesia, tachycardia and autonomic blockade on the Anrep effect in intact dogs. Amer. J. Physiol. 226, 1450 (1974).PubMedGoogle Scholar
  145. Waters, D.D., Luz, P.D., Wyatt, H.L., Swan, H.J.C., Forrester, J.S.: Early changes in regional and global left ventricular function induced by graded reduction in regional coronary perfusion. Amer. J. Cardiol. 39, 537–543 (1977).PubMedCrossRefGoogle Scholar
  146. Weisfeldt, M.L., Armstrong, P., Scully, H.E., Sanders, C.A., Daggett, W.M.: Incomplete relaxation between beats after myocardial hypoxia and ischemia. J. clin. Invest. 53, 1626 (1974 a).Google Scholar
  147. Weisfeldt, M. L., Scully, H. E., Frederiksen, J., Rubenstein, J. J., Pohosz, G.M., Beierholm, E., Bello, A.G., Daggett, W.M.: Hemodynamic determinants of maximum negative dp/dt and periods of diastole. Amer. J. Physiol. 227, 613–621 (1974b).PubMedGoogle Scholar
  148. Weiss, J.L., Frederiksen, J., Weisfeldt, M.L.: Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J. clin. Invest. 58, 751–776 (1976).PubMedCrossRefGoogle Scholar
  149. Weiss, J.L., Weisfeldt, M.L., Mason, S.J., Garrison, J.B., Livengood, S.V., Fortuin, N.J.: Evidence of Frank-Starling effect in man during severe semisupine exercise. Circulation 59, 655 (1979).PubMedGoogle Scholar
  150. Weissler, A.M.: Systolic-time intervals. New Engl. J. Med. 296, 321 (1977).PubMedCrossRefGoogle Scholar
  151. Wetterer, E.: Flowmeters: Their theory, construction and operation. Handbook of Physiology, Circulation (Hamilton, W.F., Dow, P., eds.). Washington: American Physiol. Soc. 2, 1294 (1963).Google Scholar
  152. Wetterer, E., Kenner, Th.: Grundlagen der Dynamik des Arterienpulses. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  153. Wezler, K.: Der diastolische Herztonus. L, II., III. Teil. Z. Kreisl.-Forsch. 51, 651, 836, 907 (1962).Google Scholar
  154. Wiggers, C.J.: Studies on the consecutive phases of the cardiac cycle. I. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Amer. J. Physiol. 56, 415 (1921).Google Scholar
  155. Wiggers, C.J.: Determinants of cardiac performance. Circulation 4, 485 (1951).PubMedGoogle Scholar
  156. Witzleb, E.: Venentonusreaktionen in kapazitiven Hautgefäßen bei Orthostase. Pflügers Arch. ges. Physiol. 302, 315 (1968).Google Scholar
  157. Zeus, R.: The peripheral circulations. New York-London: Grane & Stratton 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • E. Bassenge

There are no affiliations available

Personalised recommendations