Skip to main content

Physical Aspects of Eye Plaque Brachytherapy Using Photon Emitters

  • Chapter
Radiotherapy of Intraocular and Orbital Tumors

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 166 Accesses

Abstract

The current trend toward the use of 125I seed rather than 60Co applicators in the treatment of ocular tumors stems largely from the extent to which photons from the two radionuclides are attenuated differently by plaque material on the one hand and by intraocular tissue on the other. The much lower energies of 125I photons from seeds in a rimmed gold plaque not only permit near-total elimination of radiation dose in orbital tissue adjacent to the plaque but also allow significant dose reduction to critical structures within the eye, relative to either 60Co plaque or proton beam reatment (Fairchild 1984). Although other photon-emitting radionuclides have been used in ophthalmic applicators (Luxton et al. 1988a), we will focus attention here on the physical characteristics of 60Co and 125I applicators because they have been the most widely used and because they illustrate well the pertinent differences between “high energy” and “low energy” photons for this type of brachytherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astrahan M, Liggett P, Petrovich Z, Luxton G (1988) A 500 kHz localized current field hyperthermia system for use with ophthalmic plaque radiotherapy. Recent Results Cancer Res 107:93–98

    PubMed  CAS  Google Scholar 

  • Astrahan MA, Luxton G, Gabor J, Kampp TD, Liggett PE, Sapozink MD, Petrovich Z (1990) An interactive treatment planning system for ophthalmic plaque radiotherapy. Int J Radiat Oncol Biol Phys 18:679–687

    Article  PubMed  CAS  Google Scholar 

  • Beddoe AH (1972) Exposure distributions from 60Co ophthalmic applicator. Br J Radiol 45:157

    Article  PubMed  CAS  Google Scholar 

  • Beddoe AH (1975) Isoexposure curves for 60Co ophthalmic applicators. Australas Radiol 19:145–151

    Article  PubMed  CAS  Google Scholar 

  • Casebow MP (1971) The calculation and measurement of exposure distributions from 60Co ophthalmic applicators. Br J Radiol 44:618–624

    Article  PubMed  CAS  Google Scholar 

  • Chan B, Rotman M, Randall GJ (1972) Computerized dosimetry of 60Co ophthalmic applicators. Radiology 103:705–707

    PubMed  CAS  Google Scholar 

  • Chiu-Tsao ST, O’Brien K, Sanna R et al. (1986) Monte Carlo dosimetry for 125I and 60Co in eye plaque therapy. Med Phys 13:678–682

    Article  PubMed  CAS  Google Scholar 

  • Chiu-Tsao ST, Anderson LL, Stabile L (1988) TLD dosimetry for 125I eye plaque. Phys Med Biol 33 [Suppl 1]:128

    Google Scholar 

  • Chiu-Tsao ST, Anderson LL, O’Brien K, Sanna R (1990) Dose rate determination for 125I seeds. Med Phys 17: 815–825

    Article  PubMed  CAS  Google Scholar 

  • Coleman DJ, Lizzi FL, Burgess SEP et al. (1986) Ultrasonic hyperthermia and radiation in the management of intraocular malignant melanoma. Am J Ophthalmol 101:635–642

    PubMed  CAS  Google Scholar 

  • Cygler J, Szanto J, Soubra M, Rogers DWO (1990) Effects of gold and silver backings on the dose rate around an 125I seed. Med Phys 17:172–178

    Article  PubMed  CAS  Google Scholar 

  • Earle J, Kline RW, Robertson DM (1987) Selection of iodine 125 for the collaborative ocular melanoma study. Arch Ophthalmol 105:763–764

    Article  PubMed  CAS  Google Scholar 

  • Fairchild RG (1984) New radiotherapeutic techniques in nuclear ophthalmology. Sem Nucl Med 14:35–45

    Article  CAS  Google Scholar 

  • Finger PT, Packer S, Svitra PP, Paglione RW, Anderson LL, Kim JH, Jacobiec FA (1985) Thermoradiotherapy for intraocular tumors. Arch Ophthalmol 103:1574–1578

    Article  PubMed  CAS  Google Scholar 

  • Finger PT, Packer S, Paglione RW, Gatz JF, Ho TK, Bosworth JL (1989) Thermoradiotherapy of choroidal melanoma: clinical experience. Ophthalmology 96:1384–1388

    PubMed  CAS  Google Scholar 

  • Goitein M, Miller T (1983) Planning proton therapy of the eye. Med Phys 10:275–283

    Article  PubMed  CAS  Google Scholar 

  • Harnett AN, Thomson ES (1988) An iodine-125 plaque for radiotherapy of the eye: manufacture and dosimetric considerations. Br J Radiol 61:835–838

    Article  PubMed  CAS  Google Scholar 

  • Houdek PV, Schwade JG, Medina AJ et al. (1989) MR technique for localization and verification procedures in episcleral brachytherapy. Int J Radiat Oncol Biol Phys 17:1111–1114

    Article  PubMed  CAS  Google Scholar 

  • Innes G (1962) The application of physics in the treatment of ocular neoplasms. In: Boniuk M (ed) Ocular and adnexal tumors. CV Mosby, St. Louis, p 142

    Google Scholar 

  • Interstitial Collaborative Working Group: Anderson LL, Nath R, Weaver KA et al. (1990) Interstitial brachy-therapy: physical, biological and clinical considerations. Raven, New York

    Google Scholar 

  • Karolis C, Amies C, Frost RB, Billson FA (1989) The development of a thin stainless steel eye plaque to treat tumours of the eye up to 15 mm in diameter. Australas Phys Eng Sci Med 12:172–177

    PubMed  CAS  Google Scholar 

  • Karolis C, Frost RB, Billson FA (1990) A thin I-125 seed eye plaque to treat intraocular tumors using an acrylic insert to precisely position the sources. Int J Radiat Oncol Biol Phys 18:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Kepka AG, Johnson PM, Kline RW (1988) The generalized geometry of eye plaque therapy. Med Phys 15:375–379

    Article  PubMed  CAS  Google Scholar 

  • Ling CC, Chen GT, Boothby JW et al. (1989) Computer assisted treatment planning for 125I ophthalmic plaque radiotherapy. Int J Radiat Oncol Biol Phys 17:405–410

    Article  PubMed  CAS  Google Scholar 

  • Luxton G, Astrahan MA, Liggett PE, Neblett DL, Cohen DM, Petrovich Z (1988a) Dosimetric calculations and measurements of gold plaque ophthalmic irradiators using iridium-192 and iodine-125 seeds. Int J Radiat Oncol Biol Phys 15:167–176

    Article  PubMed  CAS  Google Scholar 

  • Luxton G, Astrahan MA, Petrovich Z (1988b) Backscatter measurements from a single seed of 125I for ophthalmic plaque dosimetry. Med Phys 15:397–400

    Article  PubMed  CAS  Google Scholar 

  • Magnus L (1967) Tiefendosisberechnung für die 60Co-Augenapplikatoren CKA 1–4 (nach Stallard). Strahlentherapie 132:379–386

    PubMed  CAS  Google Scholar 

  • Magnus L, Göbbeler T, Strötges (1968) Tiefendosisberechnung für die 60Co-Augenapplikatoren CKA 5–11 (nach Stallard). Strahlentherapie 136:170–177

    PubMed  CAS  Google Scholar 

  • Magnus L, Göbbeler T, Rassow J, Strötges W (1969) Isodosenmessungen an den Kobalt-60-Augenapplikatoren (nach Stallard): die Isodosen bei den Applikatoren CKA 1–4. Radiol Clin Biol 38:213–227

    PubMed  CAS  Google Scholar 

  • Meisberger LJ, Keller RJ, Shalek RJ (1968) The effective attenuation in water of the gamma rays of gold 198, iridium 192, cesium 137, radium 226, and cobalt 60. Radiology 90:953–957

    PubMed  CAS  Google Scholar 

  • Packer S, Rotman M (1980) Radiotherapy of choroidal melanoma with iodine-125. Ophthalmology 87:582–590

    PubMed  CAS  Google Scholar 

  • Packer S, Fairchild RG, Salanitro P (1987) New techniques for iodine-125 radiotherapy of intraocular tumors. Ann Ophthalmol 19:26–30

    PubMed  CAS  Google Scholar 

  • Rassow J, Strüter H-D, Magnus L, Göbbeler T (1970) Isodosenmessungen an den Kobalt-60-Augenapplikatoren (nach Stallard): allgemeine Berechnung der Tiefendosis für kreisförmige Flächenaktivitäten und die Messung der Isodosen für die Applikatoren CKA 8–11. Radiol Clin Biol 39:32–46

    PubMed  CAS  Google Scholar 

  • Schell MC, Weaver KA, Phillips TL, Char DH, Quivey JM, Barnett C, Ling CC (1989) Design of iodine-125 eye plaques for radiation therapy. Endocurietherapy/ Hyperthermia Oncology 5:83–90

    Google Scholar 

  • Sealy R, le Roux PLM, Rapley F, Hering E, Shackleton D, Sevel D (1976) The treatment of ophthalmic tumours with low-energy sources. Br J Radiol 49:551–554

    Article  PubMed  CAS  Google Scholar 

  • Sealy R, Buret E, Cleminshaw H et al. (1980) Progress in the use of iodine therapy for tumours of the eye. Br J Radiol 53:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Task Group 32: Nath R, Anderson L, Jones D, Ling C, Loevinger R, Williamson J, Hanson W (1987) Specification of brachytherapy source strength, AAPM Report No. 21. American Institute of Physics, New York

    Google Scholar 

  • Weaver KA (1986) The dosimetry of 125I seed eye plaques. Med Phys 13:78–83

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Sternick ES, Muise DJ (1988) Effect of gold shielding on the dosimetry of an 125I seed at close range. Med Phys 15:627–628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, L.L., Chiu-Tsao, ST. (1993). Physical Aspects of Eye Plaque Brachytherapy Using Photon Emitters. In: Alberti, W.E., Sagerman, R.H. (eds) Radiotherapy of Intraocular and Orbital Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97011-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97011-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97013-9

  • Online ISBN: 978-3-642-97011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics