Brownian Motion in Periodic Potentials

  • Hannes Risken
Part of the Springer Series in Synergetics book series (SSSYN, volume 18)


In this chapter we apply some of the methods discussed in Chap. 10 for solving the Kramers equation for the problem of Brownian motion in a periodic potential. As discussed below, this problem arises in several fields of science, for instance in physics, chemical physics and communication theory. Restricting ourselves to the one-dimensional case, we deal with particles which are kicked around by the Langevin forces and move in a one-dimensional periodic potential (Fig. 11.1). Because of the excitation due to the Langevin forces the particles may leave the well and go either to the neighboring left or right well or they may move in the course of time to other wells which are further away. For long enough times the particles will thus diffuse in both directions of the x axis. As shown in Sect. 11.7 this diffusion can be described by a diffusion constant D, if we wait long enough. Thus the mean-square displacement is given by
$$\langle\lbrack x(t)-x(0)\rbrack^2\rangle=2 D\ t$$
for large times t. (The particles are then distributed over many potential wells.)


Brownian Motion Drift Velocity Periodic Potential Critical Force Complex Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 11.1
    R. L. Stratonovich: Radiotekhnika; elektronika 3, No 4, 497 (1958)Google Scholar
  2. 11.2
    R. L. Stratonovich: Topics in the Theory of Random Noise, Vol. II (Gordon and Breach, New York 1967) Chap. 9zbMATHGoogle Scholar
  3. 11.3
    A. J. Viterbi: Proc. IEEE 51, 1737 (1963)CrossRefGoogle Scholar
  4. 11.4
    A. J. Viterbi: Principles of Coherent Communication (McGraw-Hill, New York 1966)Google Scholar
  5. 11.5
    W. C. Lindsey: Synchronization Systems in Communication and Control (Prentice Hall, Englewood Cliffs, NJ 1972)Google Scholar
  6. 11.6
    H. Haken, H. Sauermann, Ch. Schmid, H. D. Vollmer: Z. Physik 206, 369 (1967)ADSCrossRefGoogle Scholar
  7. 11.7
    Y. M. Ivanchenko, L. A. Zil’berman: Sov. Phys. JETP 28, 1272 (1969)ADSGoogle Scholar
  8. 11.8
    V. Ambegaokar, B. I. Halperin: Phys. Rev. Lett. 22, 1364 (1969)ADSCrossRefGoogle Scholar
  9. 11.9
    J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, M. O. Scully: Phys. Rev. A25, 2214 (1982)MathSciNetADSGoogle Scholar
  10. 11.10
    J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre, H. Risken: Phys. Rev. A25, 2226 (1982)MathSciNetADSGoogle Scholar
  11. 11.11
    P. Fulde, L. Pietronero, W. R. Schneider, S. Strässler: Phys. Rev. Lett. 35, 1776 (1975)ADSCrossRefGoogle Scholar
  12. 11.12
    W. Dieterich, I. Peschel, W. R. Schneider: Z. Physik B27, 177 (1977)ADSGoogle Scholar
  13. 11.13
    H. Risken, H. D. Vollmer: Z. Physik B31, 209 (1978)ADSGoogle Scholar
  14. 11.14
    T. Geisel: In Physics of Superionic Conductors, ed. by M. B. Salamon, Topic Current Phys., Vol. 15 (Springer, Berlin, Heidelberg, New York 1979) p. 201Google Scholar
  15. 11.15
    W. Dieterich, P. Fulde, I. Peschel: Adv. Phys. 29, 527 (1980)ADSCrossRefGoogle Scholar
  16. 11.16
    A. K. Das, P. Schwendimann: Physica 89A, 605 (1977)ADSGoogle Scholar
  17. 11.17
    W. T. Coffey: Adv. Molecular Relaxation and Interaction Processes 17, 169 (1980)CrossRefGoogle Scholar
  18. 11.18
    G. Wyllie: Phys. Reps. 61, 329 (1980)MathSciNetADSCrossRefGoogle Scholar
  19. 11.19
    R. W. Gerling: Z. Physik B45, 39 (1981)ADSGoogle Scholar
  20. 11.20
    E. Praestgaard, N. G. van Kampen: Molec. Phys. 43, 33 (1981)ADSCrossRefGoogle Scholar
  21. 11.21
    V. I. Tikhonov: Avtomatika i Telemekhanika 21, 301 (1960)Google Scholar
  22. 11.22
    P. A. Lee: J. Appl. Phys. 42, 325 (1971)ADSCrossRefGoogle Scholar
  23. 11.23
    K. Kurkijärvi, V. Ambegaokar: Phys. Lett. A31, 314 (1970)ADSGoogle Scholar
  24. 11.24
    T. Schneider, E. P. Stoll, R. Morf: Phys. Rev. B18, 1417 (1978)ADSGoogle Scholar
  25. 11.25
    P. Nozières, G. Iche: J. Physique 40, 225 (1979)CrossRefGoogle Scholar
  26. 11.26
    E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, Z. Schuss: Phys. Rev. A26, 2805 (1982)ADSGoogle Scholar
  27. 11.27
    H. D. Vollmer, H. Risken: Z. Physik B37, 343 (1980)MathSciNetADSGoogle Scholar
  28. 11.28
    H. D. Vollmer, H. Risken: Z. Physik B52, 259 (1983)ADSGoogle Scholar
  29. 11.29
    H. Risken, H. D. Vollmer: Phys. Lett. 69A, 387 (1979)MathSciNetADSGoogle Scholar
  30. 11.30
    H. Risken, H. D. Vollmer: Z. Physik B35, 177 (1979)MathSciNetADSGoogle Scholar
  31. 11.31
    B. D. Josephson: Phys. Lett. 1, 251 (1962)ADSzbMATHCrossRefGoogle Scholar
  32. 11.32
    L. Solymar: Superconductive Tunneling and Applications (Chapman and Hall, London 1972)Google Scholar
  33. 11.33
    A. Barone, G. Paterno: Physics and Applications of the Josephson Effect (Wiley, New York 1982)CrossRefGoogle Scholar
  34. 11.34
    P. Debye: Ber. dt. phys. Ges. 15, 777 (1913); translated in The Collected Papers of Peter J. W. Debye (Interscience, New York 1954)Google Scholar
  35. 11.35
    A. Seeger: In Continuum Models of Discrete Systems, ed. by E. Kröner and K. H. Anthony (University of Waterloo Press, Waterloo 1980) p. 253Google Scholar
  36. 11.36
    R. D. Parmentier: In Solitons in Action, ed. by K. Longren, A. Scott (Academic, New York 1978) p. 173Google Scholar
  37. 11.37
    G. L. Lamb: Elements of Soliton Theory (Wiley, New York 1980)zbMATHGoogle Scholar
  38. 11.38
    R. K. Bullough, P. J. Caudrey (eds.): Solitons, Topics Current Phys., Vol. 17 (Springer, Berlin, Heidelberg, New York 1980)Google Scholar
  39. 11.39
    G. Eilenberger: Solitons, Springer Ser. Solid-State Sci., Vol. 19 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  40. 11.40
    M. Büttiker, R. Landauer: In Nonlinear Phenomena at Phase Transitions and Instabilities, ed. by T. Riste (Plenum, New York 1982)Google Scholar
  41. 11.41
    R. A. Guyer, M. D. Miller: Phys. Rev. A17, 1774 (1978)ADSGoogle Scholar
  42. 11.42
    H. Jorke: Modellrechnungen zur Brownschen Bewegung im periodischen Potential, Diplomthesis, Ulm (1981)Google Scholar
  43. 11.43
    J. Mathews, R. L. Walker: Mathematical Methods of Physics (Benjamin, Menlo Park, CA 1973) p. 198ff.Google Scholar
  44. 11.44
    L. Brillouin: Wave Propagation in Periodic Structures (McGraw-Hill, New York 1946)zbMATHGoogle Scholar
  45. 11.45
    A. H. Wilson: The Theory of Metals (University Press, Cambridge 1958)Google Scholar
  46. 11.46
    R. Festa, E. G. d’Agliano: Physica 90A, 229 (1978)ADSGoogle Scholar
  47. 11.47
    D. L. Weaver: Physica 98A, 359 (1979)ADSGoogle Scholar
  48. 11.48
    R. A. Guyer: Phys. Rev. B21, 4484 (1980)MathSciNetADSGoogle Scholar
  49. 11.49
    H. Risken, K. Voigtlaender: unpublishedGoogle Scholar
  50. 11.50
    M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions (Dover, New York 1965)Google Scholar
  51. 11.51
    D. E. McCumber: J. Appl. Phys. 39, 3113 (1968)ADSCrossRefGoogle Scholar
  52. 11.52
    C. M. Falco: Am. J. Phys. 44, 733 (1976)ADSCrossRefGoogle Scholar
  53. 11.53
    W. Dieterich, T. Geisel, I. Peschel: Z. Physik B29, 5 (1978)ADSGoogle Scholar
  54. 11.54
    T. Springer: Quasielastic Neutron Scattering for the Investigation of Diffusive Motion in Solids and Liquids. Springer Tracts Mod. Phys. 64 (Springer, Berlin, Heidelberg, New York 1972)Google Scholar
  55. 11.55
    11.55 J. L. Synge, B. A. Griffith: Principles of Mechanics (McGraw-Hill, New York 1959)Google Scholar
  56. 11.56
    A. H. Nayfeh, D. T. Mook: Nonlinear Oscillations (Wiley, New York 1979) p. 55zbMATHGoogle Scholar
  57. 11.57
    H. Goldstein: Classical Mechanics (Addison-Wesley, Reading, Mass. 1950)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Hannes Risken
    • 1
  1. 1.Abteilung für Theoretische PhysikUniversität UlmUlmFed. Rep. of Germany

Personalised recommendations