The Transmission of Excitation from Cell to Cell

  • R. F. Schmidt


The junction of an axonal ending with a nerve cell, a muscle cell, or a gland cell was given the name synapse, around the turn of the century, by Sherrington. In mammals - and thus in humans - the chemical synapse is most common. In this type, when an action potential reaches the end of the axon, a chemical substance is released there, and causes excitation or inhibition at the membrane of the adjacent cell. Electrical synapses are relatively rare; here the axonal action potential elicits excitation or inhibition in the next cell without the intervention of a chemical transmission process. At both chemical and electrical synapses, signals are almost always transmitted only from the presynaptic (axonal) side to the postsynaptic region of the next cell. That is, the function of a synapse is analogous to that of a valve.


Inhibitory Synapse Presynaptic Inhibition Chemical Synapse Electrical Synapse Inhibitory Postsynaptic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Textbooks and Handbooks

  1. 1.
    Akert, K., Waser, P.G. (Eds.): Mechanisms of Synaptic Transmission. Progress in Brain Research Vol. 31. Amsterdam: Elsevier 1969Google Scholar
  2. 2.
    Cooper, J. R., Bloom, F. E., Roth, R. H.: The Biochemical Basis of Neuropharmacology. 3rd Edition. New York: Oxford University Press 1978Google Scholar
  3. 3.
    Eccles, J. C.: The Physiology of Synapses. Berlin-Göttingen-Heidel- berg-New York: Springer 1964CrossRefGoogle Scholar
  4. 4.
    Eccles, J.C.: The Inhibitory Pathways of the Central Nervous System. The Sherrington Lectures IX. Springfield/Ill.: Ch.C.Thomas 1969Google Scholar
  5. 5.
    Von Euler, U.S., Pernow, B. (Eds.): Substance P. Nobel Symposium 37. New York: Raven Press 1977Google Scholar
  6. 6.
    Gainer, H. (Ed.): Peptides in Neurobiology. New York-London: Plenum Press 1977Google Scholar
  7. 7.
    Ganong, W. F., Martini, L. (Eds.): Frontiers in Neuroendocrinolo- gy, Vol. 5. New York: Raven Press 1978Google Scholar
  8. 8.
    Grob, D. (Ed.): Myasthenia gravis. Ann. N. Y. Acad. Sei. 274,1–682 (1976)Google Scholar
  9. 9.
    Kandel, E. R. (Vol. Ed.): Handbook of Physiology: Section 1: The Nervous System. Vol. I. Cellular Biology of Neurons, Parts 1 and 2, pp. 1–1182. American Physiological Society, Bethesda, Maryland 1977Google Scholar
  10. 10.
    Katz, B.: Nerve, Muscle, and Synapse. New York: McGraw-Hill 1966Google Scholar
  11. 11.
    Kuffler, S.W., Nicholls, J.G.: From Neuron to Brain. A Cellular Approach to the Function of the Nervous System. Sunderland, Mass.: Sinauer Associates, Inc. 1976Google Scholar
  12. 12.
    The Synapse. Cold Spring Harbor Symp. Quant. Biol. 40 1–694 (1976)Google Scholar
  13. 13.
    Zaimis, E. (Ed.): Neuromuscular Junction. Berlin-Heidelberg-New York: Springer 1976Google Scholar

Research Reports and Reviews

  1. 14.
    Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. J. Histo- chem. Cytochem. 1565 (1967)CrossRefGoogle Scholar
  2. 15.
    Curtis, D.R., Johnston, G.A.R.: Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 6997 (1973)Google Scholar
  3. 16.
    Dahlstrom, A.: Fluorescence histochemistry of monoamines in the CNS. In: Jasper, H. H., Ward, A. A., Pope, A. (Eds.): Basic Mechanisms of the Epilepsies, p. 212. Boston: Little Brown and Co. 1969Google Scholar
  4. 17.
    Eccles, J. C.: The ionic mechanisms of excitatory and inhibitory synaptic action. Ann. N. Y. Acad. Sci. 137473 (1966)PubMedCrossRefGoogle Scholar
  5. 18.
    Eccles, J.C.: Excitatory and inhibitory mechanisms in brain. In: Jasper, H. H., Ward, A. A., Pope, A. (Eds.): Basic Mechanisms of the Epilepsies, p.229. Boston: Little, Brown and Co. 1969Google Scholar
  6. 19.
    Gage, P.W.: Generation of end-plate potentials. Physiol. Rev.56 177–247(1976)PubMedGoogle Scholar
  7. 20.
    Krnjević, K.: vertebrates. Physiol. Rev.54418 (1974)Google Scholar
  8. 21.
    Henneman, E., Somjen, G., Carpenter, D.O.: Functional significance of cell size in spinal motoneurons. J. Neurophysiol.28 560 (1965)PubMedGoogle Scholar
  9. 22.
    Henneman, E., Somjen, G., Carpenter, D. O.: Excitability and in- hibitability of motoneurons of different sizes. J. Neurophysiol. 28, 599 (1965)PubMedGoogle Scholar
  10. 23.
    Hubbard, J. I.: Microphysiology of vertebrate neuromuscular transmission. Physiol. Rev. 53,674 (1973)PubMedGoogle Scholar
  11. 24.
    Hubbard, J. I., Schmidt, R. F.: An electrophysiological investigation of mammalian motor nerve terminal. J. Physiol. (Lond.) 166 145 (1963)Google Scholar
  12. 25.
    Iiversen, L. L.: Neurotransmitters, neurohormones, and other small molecules in neurons. In: Schmitt, F.O. (Ed.): The Neurosciences, 2nd Study Program, p. 768.1970Google Scholar
  13. 26.
    Schmidt, R. F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol.6320 (1971)PubMedCrossRefGoogle Scholar
  14. 27.
    Schmidt, R.F.: Control of the access of afferent activity to somatosensory pathways. In: IGGO, A. (Ed.): Handbook of Sensory Physiology, Vol. II, p. 151. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 28.
    Takeuchi, A., Takeuchi, N.: Active phase of frog’s endplate potential. J. Neurophysiol.22395 (1959)PubMedGoogle Scholar
  16. 29.
    Whittaker, V.:aP.: The vesicle hypothesis. In: Andersen, P., Jansen, J.K.S. (Eds.): Excitatory Synaptic Mechanisms, p.66. Oslo: Universitetsforlaget 1970Google Scholar
  17. 30.
    Whittaker, V. P.: Origin and function of synaptic vesicles. Ann. N.Y. Acad. Sci. 183,21 (1971)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1983

Authors and Affiliations

  • R. F. Schmidt

There are no affiliations available

Personalised recommendations