Skip to main content

Muscle

  • Chapter
Human Physiology

Abstract

Muscles are “machines” for converting chemical energy directly into mechanical energy (work) and heat. Muscular work can easily be measured. When an isolated muscle of a cold-blooded animal — for example, the frog sartorius — is loaded with a light weight and then stimulated electrically with a brief current pulse, it twitches; in lifting the weight, it performs mechanical work (load times distance). A contraction of this sort, in which the muscle shortens under constant load, is called isotonic. By contrast, in an isometric contraction the tendons at the ends of the muscle are held so firmly that although the muscle exerts force it cannot shorten, and thus cannot do external work (it does do work in a physiological sense). The results of long research have made it possible to explain in considerable detail the way this muscle machine operates, at a molecular level and on the basis of physical and chemical laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Handbooks

  1. Carlson, F.D., Wilkie, D.R: Muscle Physiology. Englewood CLIFF, N.J.: Prentice Hall (1974)

    Google Scholar 

  2. Wilkie, D. R.: Muscle. London: Edward Arnold 1976

    Google Scholar 

Research Reports and Reviews

  1. Blinks, J. R, Rudel, R, Taylor, S. R: Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin. J. Physiol. 277,291–323 (1978)

    PubMed  CAS  Google Scholar 

  2. Bülbring, E., Brading, A.F., Jones, A.W., Tomita, T.: Smooth Muscle. London: Edward Arnold 1970

    Google Scholar 

  3. Casteels, R, Godfraind, T., Rüegg, J.C.: Excitation-Contraction Coupling in Smooth Muscle. Amsterdam: Elsevier North Holland 1977

    Google Scholar 

  4. Gordon, A. M., Huxley, A. F., Julian, F. J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.) 184,170 (1966)

    CAS  Google Scholar 

  5. Hasselbach, W.: Relaxing factor and the relaxation of muscle. Progr. Biophys. mol. Biol. 14,167–222 (1964)

    Article  CAS  Google Scholar 

  6. Huxley, A. F., Taylor, R E.: Local activation of striated muscle fibres. J. Physiol. (Lond.) 144,426 (1958)

    CAS  Google Scholar 

  7. Huxley, A.F.: Muscular contraction. J. Physiol. (Lond.) 243, 1–43 (1974)

    CAS  Google Scholar 

  8. Huxley, H. E., Hanson, J.: Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation. Nature 173,973 (1954)

    Article  PubMed  CAS  Google Scholar 

  9. Huxley, H.E.: The mechanism of muscular contraction. Science 164,1356 (1969)

    Article  PubMed  CAS  Google Scholar 

  10. Huxley, H.E.: Structural changes in the actin and myosin containing filaments during contraction. Cold Spr. Harb. Symp. quant. Biol. 37,361 (1973)

    Article  CAS  Google Scholar 

  11. Huxley, H.E., Simmons, R.M., Faruki, A.R., Kress, M., Bordas, J., Koch, M.H.J.: Msec time resolved change in X-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc. Natl. Acad. Sci., USA 78, 2297 (1981)

    Article  PubMed  CAS  Google Scholar 

  12. Infante, A. A., Davies, R.E.: Adenosine triphosphate breakdown during a single isotonic twitch of frog sartorius muscle. Biochem. biophys. Res. Commun. 9,410 (1962)

    Article  PubMed  CAS  Google Scholar 

  13. Jewell, B.R., Wilkie, D.R.: An analysis of the mechanical components in frog striated muscle. J. Physiol. (Lond.) 143,515 (1958)

    CAS  Google Scholar 

  14. Mannherz, H.G., Schirmer, RH.: Die Molekularbiologie der Bewegung. Chemie in unserer Zeit 6,165–202 (1970)

    Article  Google Scholar 

  15. Rüegg, J. C.: Smooth muscle tone. Physiol. Rev. 51,201 (1971)

    PubMed  Google Scholar 

  16. Weber, H. H., Portzehl, H.: The transference of the muscle energy in the contraction cycle. Progr. Biophys. mol. Biol. 4,61 (1954)

    Google Scholar 

  17. Wilkie, D.R.: The relation between force and velocity in human muscle. J. Physiol. 110,249–280 (1950)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Rüegg, J.C. (1983). Muscle. In: Schmidt, R.F., Thews, G. (eds) Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96714-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96714-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96716-0

  • Online ISBN: 978-3-642-96714-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics