Synergetics pp 263-291 | Cite as

Chemical and Biochemical Systems

  • Hermann Haken


Basically, we may distinguish between two different kinds of chemical processes:
  1. 1)

    Several chemical reactants are put together at a certain instant, and we are then studying the processes going on. In customary thermodynamics, one usually compares only the reactants and the final products and observes in which direction a process goes. This is not the topic we want to treat in this book. We rather consider the following situation, which may serve as a model for biochemical reactants.

  2. 2)
    Several reactants are continuously fed into a reactor where new chemicals are continuously produced. The products are then removed in such a way that we have steady state conditions. These processes can be maintained only under conditions far from thermal equilibrium. A number of interesting questions arise which will have a bearing on theories of formation of structures in biological systems and on theories of evolution. The questions we want to focus our attention on are especially the following:
    1. 1)

      Under which conditions can we get certain products in large well-controlled concentrations?

    2. 2)

      Can chemical reactions produce spatial or temporal or spatio-temporal patterns?



Transition Rate Master Equation Detailed Balance Soft Mode Biochemical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C. H. Bray: J. Am. Chem. Soc. 43,1262 (1921)CrossRefGoogle Scholar
  2. B. P. Belousov: Sb. ref. radats. med. Moscow (1959)Google Scholar
  3. V. A. Vavilin, A. M. Zhabotinsky, L. S. Yaguzhinsky: Oscillatory Processes in Biological and Chemical Systems (Moscow Science Publ. 1967) p. 181Google Scholar
  4. A. N. Zaikin, A. M. Zhabotinsky: Nature 225, 535 (1970)ADSCrossRefGoogle Scholar
  5. A. M. Zhabotinsky, A. N. Zaikin: J. Theor. Biol. 40, 45 (1973)CrossRefGoogle Scholar
  6. A. M. Turing: Phil. Trans. Roy. Soc. B 237, 37 (1952)ADSGoogle Scholar
  7. I. Prigogine, G. Nicolis: Quart. Rev. Biophys. 4, 107 (1971)CrossRefGoogle Scholar
  8. I. Prigogine, G. Nicolis: Uspechi, Fis. Nauk 109, 517 (1973)Google Scholar
  9. I. Prigogine, R. Lefever: In Synergetics, ed. by H. Haken (Teubner, Stuttgart 1973)Google Scholar
  10. D. Mc Quarry: Supplementary Review Series in Appl. Probability (Methuen, London 1967)Google Scholar
  11. Faraday Symposium 9: Chemistry of Oscillatory Phenomena, London (1974)Google Scholar
  12. G. Nicolis, J. Portnow: Chem. Rev. 73,365 (1973)CrossRefGoogle Scholar
  13. F. Schlögl: Z. Phys. 253, 147 (1972)ADSCrossRefGoogle Scholar
  14. H. Ohno: Stuttgart (unpublished)Google Scholar
  15. J. F. G. Auchmuchty, G. Nicolis: Bull. Math. Biol. 37, 1 (1974)Google Scholar
  16. Y. Kuramoto, T. Tsusuki: Progr. Theor. Phys. 52, 1399 (1974)ADSCrossRefGoogle Scholar
  17. M. Herschkowitz-Kaufmann: Bull. Math. Biol. 37, 589 (1975)CrossRefGoogle Scholar
  18. R. J. Field, E. Korös, R. M. Noyes: J. Am. Chem. Soc. 49,8649 (1972)CrossRefGoogle Scholar
  19. R. J. Field, R. M. Noyes: Nature 237,390 (1972)ADSCrossRefGoogle Scholar
  20. R. J. Field, R. M. Noyes: J. Chem. Phys. 60, 1877 (1974)ADSCrossRefGoogle Scholar
  21. R. J. Field, R. M. Noyes: J. Am. Chem. Soc. 96, 2001 (1974)CrossRefGoogle Scholar
  22. V. J. McNeil, D. F. Walls: J. Stat. Phys. 10, 439 (1974)ADSCrossRefGoogle Scholar
  23. H. Haken: Z. Phys. B 20, 413 (1975)ADSGoogle Scholar
  24. C. H. Gardiner, K. J. McNeil, D. F. Walls, I. S. Matheson: J. Stat. Phys. 14, 4, 307 (1976)ADSCrossRefGoogle Scholar
  25. G. Nicolis, P. Aden, A. van Nypelseer: Progr. Theor. Phys. 52,1481 (1974)ADSCrossRefGoogle Scholar
  26. M. Malek-Mansour, G. Nicolis: preprint Febr. 1975Google Scholar
  27. H. Haken: Z. Phys. B 20, 413 (1975)ADSGoogle Scholar
  28. G. F. Oster, A. S. Perelson: Chem. Reaction Dynamics. Arch. Rat. Mech. Anal. 55, 230 (1974)MathSciNetADSGoogle Scholar
  29. A. S. Perelson, G. F. Oster: Chem. Reaction Dynamics, Part II; Reaction Networks. Arch. Rat. Mech. Anal. 57, 31 (1974/75)MathSciNetCrossRefGoogle Scholar
  30. G. F. Oster, A. S. Perelson, A. Katchalsky: Quart. Rev. Biophys. 6,1 (1973)CrossRefGoogle Scholar
  31. O. E. Rössler: In Lecture Notes in Biomathematics, Vol. 4 (Springer, Berlin-Heidelberg-New York 1974) p. 419Google Scholar
  32. O. E. Rössler: Z. Naturforsch. 31a, 255 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Germany

Personalised recommendations