Synergetics pp 41-67 | Cite as


How to Be Unbiased
  • Hermann Haken


In this chapter we want to show how, by some sort of new interpretation of probability theory, we get an insight into a seemingly quite different discipline, namely information theory. Consider again the sequence of tossing a coin with outcomes 0 and 1. Now interpret 0 and 1 as a dash and dot of a Morse alphabet. We all know that by means of a Morse alphabet we can transmit messages so that we may ascribe a certain meaning to a certain sequence of symbols. Or, in other words, a certain sequence of symbols carries information. In information theory we try to find a measure for the amount of information.


Internal Energy Information Gain Information Entropy Entropy Density Extensive Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Brillouin: Science and Information Theory (Academic Press, New York-London 1962)zbMATHGoogle Scholar
  2. L. Brillouin: Scientific Uncertainty and Information (Academic Press, New York-London 1964)zbMATHGoogle Scholar
  3. C. E. Shannon: A mathematical theory of communication. Bell System Techn. J. 27, 370–423, 623–656 (1948)MathSciNetGoogle Scholar
  4. C. E. Shannon: Bell System Techn. J. 30, 50 (1951)zbMATHGoogle Scholar
  5. C. E. Shannon, W. Weaver: The Mathematical Theory of Communication (Univ. of Illin. Press, Urbana 1949)zbMATHGoogle Scholar
  6. L. Boltzmann: Vorlesungen über Gastheorie, 2 Vols. (Leipzig 1896, 1898)Google Scholar
  7. S. Kullback: Ann. Math. Statist. 22, 79 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  8. S. Kullback: Information Theory and Statistics (Wiley, New York 1951)Google Scholar
  9. E. T. Jaynes: Phys. Rev. 106,4,620 (1957); Phys. Rev. 108, 171 (1957)MathSciNetADSCrossRefGoogle Scholar
  10. E. T. Jaynes: In Delaware Seminar in the Foundations of Physics (Springer, Berlin-Heidelberg-New York 1967)Google Scholar
  11. W. Elsasser: Phys. Rev. 52, 987 (1937); Z. Phys. 171, 66 (1968)ADSzbMATHCrossRefGoogle Scholar
  12. Landau-Lifshitz: In Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon Press, London-Paris 1952)Google Scholar
  13. R. Becker: Theory of Heat (Springer, Berlin-Heidelberg-New York 1967)Google Scholar
  14. A. Münster: Statistical Thermodynamics, Vol. I (Springer, Berlin-Heidelberg-New York 1969)zbMATHGoogle Scholar
  15. H. B. Callen: Thermodynamics (Wiley, New York 1960)zbMATHGoogle Scholar
  16. P. T. Landsberg: Thermodynamics (Wiley, New York 1961)zbMATHGoogle Scholar
  17. R. Kubo: Thermodynamics (North Holland, Amsterdam 1968)Google Scholar
  18. I. Prigogine: Introduction to Thermodynamics of Irreversible Processes (Thomas, New York 1955)Google Scholar
  19. I. Prigogine: Non-equilibrium Statistical Mechanics (Interscience, New York 1962)zbMATHGoogle Scholar
  20. S. R. De Groot, P. Mazur: Non-equilibrium Thermodynamics (North Holland, Amsterdam 1962)Google Scholar
  21. R. Haase: Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, Mass. 1969)Google Scholar
  22. D. N. Zubarev: Non-equilibrium Statistical Thermodynamics (Consultants Bureau, New York-London 1974)Google Scholar
  23. E. T. Jaynes: Information Theory. In Statistical Physics, Brandeis Lectures, Vol. 3 (W. A. Benjamin, New York 1962)Google Scholar
  24. A. Münster: In Encyclopedia of Physics, ed. by S. Flügge, Vol. III/2: Principles of Thermodynamics and Statistics (Springer, Berlin-Göttingen-Heidelberg 1959)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Germany

Personalised recommendations