Cerebral development and MRI

  • C. Raybaud
  • N. Girard


The development of the brain in the first months of life is characterised by morphological changes (growth and shape) and by histological changes (cel-lularity and myelination). Morphology is of course inexquisitely depicted by magnetic resonance imaging (MRI), but the maturational changes — water and lipid contents, cellularity — are also reflected in MRI. Since the development of the brain follows a constant, species specific course, identification of the normal milestones is possible, as is an understanding of the disease processes leading to impairment of cerebral function in the growing child. To understand the potential of MRI in this clinical context, it is necessary to recall the basic principles of MRI of the brain, and the steps in the cerebral development.


White Matter Grey Matter Weighted Image Fetal Brain Magnetization Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki S, Barkovich AJ, Nishimura K, Kjos BO, Machida T, Cogen P, Edwards M, Norman (1989) Neurofibromatosis types 1 and 2: cranial MR findings. Radiology 172: 527–534PubMedGoogle Scholar
  2. Banker BQ, Larroche JC (1962) Periventricular leukomala-cia of infancy. Arch Neurol 7: 386–410PubMedCrossRefGoogle Scholar
  3. Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988) Normal maturation of the neonatal and infant brains: MR imaging at 1,5 T. Radiology 166: 173–180PubMedGoogle Scholar
  4. Barkovich AJ, Truwit CL (1990) Brain damage from perinatal asphyxia: correlation of MR findings with gestational age. An J Neurol Radiol 13: 67–78Google Scholar
  5. Boorstein JM, Wong KT, Grossman RI, Bolinger L, Mc Go-wan JC (1994) Metastatic lesions of the brain: Imaging with magnetization transfer. Radiology 191: 799–803PubMedGoogle Scholar
  6. Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy: an autopsy study of myelination. J Neuropathol Exp Neurol 46: 283–301PubMedCrossRefGoogle Scholar
  7. Campi A, Filippi M, Gereveni S, Ciboddo G, Comi G, Scotti G, Dousset V (1996) Multiple white matter lesions of the brain. Int J Neuroradiol 2: 134–140Google Scholar
  8. Cioni G, Bartalena L, Biagioni E, Boldrini A, Canapicchi R (1992) Neuroimaging and functional outcome of neonatal leukomalacia. Behav Brain Res 49: 7–19PubMedCrossRefGoogle Scholar
  9. Cowan FM, Pennock JM, Hanrahan JD, Manji KP, Edwards AD (1994) Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neurope-diatrics 25: 172–175CrossRefGoogle Scholar
  10. Elster AD, King JC, Mathews VP, Hamilton CA (1994) Cranial tissues: appearance at gadolinium-enhanced and nonenhanced MR imaging with magnetization transfer contrast. Radiology 190: 541–546PubMedGoogle Scholar
  11. Fees-Higgins A, Larroche JC (1987) Development of the human fetal brain. INSERM-CNRS, Masson, ParisGoogle Scholar
  12. Finelli DA, Hurst GC, Gullapali RP, Bellon EM (1994) Improved contrast of enhancing brain lesions on post-gadolinium, Ti-weighted spin echo images with use of magnetization transfer. Radiology 190: 553–559PubMedGoogle Scholar
  13. Fralix TA., Ceckler TL., Wolff SD., Simon SA., Balaban RS. (1991). Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 18: 214–223PubMedCrossRefGoogle Scholar
  14. Garcia-Alix A, Cabanas F, Pellicer A, Hernanz A, Sitris TA, Quero J (1994) Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics 93: 234–240PubMedGoogle Scholar
  15. Gilles FH (1985) Perinatal neuropathology. In: Davis RL., Robertson DM. (eds). Textbook of neuropathology. Williams and Wilkins, Baltimore, p. 243Google Scholar
  16. Girard N, Raybaud C, DuLac P (1991). MRI study of brain myelination. J Neuroradiol 18: 291–307PubMedGoogle Scholar
  17. Girard NJ, Raybaud CA (1992) In vivo MRI of fetal brain cellular migration. J. Comput. Assist. Tomogr. 16: 265–267PubMedCrossRefGoogle Scholar
  18. Girard N, Raybaud C, Poncet M (1995) In vivo MR study of brain maturation in normal fetuses. An J Neurol Radiol 16: 407–413Google Scholar
  19. Girard N, Millet V, Bartoli JM, Lacroze V, Leboucq N, Raybaud Ch, Unal D (1997) Prognostic value of MR imaging of the brain in four months infants, after perinatal neurologic insult. Intern. J Neuroradiol In pressGoogle Scholar
  20. Grossman RI, Gomori JM, Ramer KN, Lexa FJ, Scnall MD (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14: 279–290PubMedGoogle Scholar
  21. Hajnal JV, Baudoin CJ, Oatridge A, Young IR, Bydder GM (1992) Design and implementation of magnetization transfer pulse sequences for clinical use. J Comput Assist Tomogr 16: 7–18PubMedCrossRefGoogle Scholar
  22. Hiehle JF, Grossman RI, Ramer KN, Scarano FG, Cohen JA (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin echo images and nonenhanced Ti-weighted images. An J Neurol Radiol 16: 69–77Google Scholar
  23. Holmes GL (1986) Morphological and physiological maturation of the brain in the neonate and young child. J Clin Neurophysiol 3: 209–238PubMedCrossRefGoogle Scholar
  24. Keeney SE Adcock EW, McArdle CB (1991a) Prospective observations of 100 high-risk neonates by high-field (1,5 Tesla) magnetic resonance imaging of the central nervous system: I. Intraventricular and extracerebral lesions. Pediatrics 87: 421–430PubMedGoogle Scholar
  25. Keeney SE, Adcock EW, McArdle CB (1991b) Prospective observations of 100 high-risk neonates by high-field (1,5 Tesla) magnetic resonance imaging of the central nervous system: II. Lesions associated with hypoxic-ischemic encephalopathy. Pediatrics 87: 431–438PubMedGoogle Scholar
  26. Koenig SH, Brown RD III, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI? Magn Reson Med 14: 482–495PubMedCrossRefGoogle Scholar
  27. Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson in Med 20: 285–291CrossRefGoogle Scholar
  28. Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cere-brosides and pH. Radiology 192: 521–529PubMedGoogle Scholar
  29. Kuenzle C, Baenziger O, Martin E, Thun-Hohenstein L, Steinlin M, Good M, Franconi S, Boltshauer E, Largo RH (1994) Prognostic value of early MR imaging in term infants with severe perinatal asphyxia. Neurope-diatrics 25: 191–200CrossRefGoogle Scholar
  30. Kurki T, Niemi P, Valtonen S (1994) MR of intracranial tumors: combined use of gadolinium and magnetization transfer. An J Neurol Radiol 15: 1727–1736Google Scholar
  31. Larroche JC, Bethmann O, Baudoin M, Couchard M (1986) Brain damage in the premature infant early lesions and new aspects of sequelae. Ital J Neurol Sci S5: 43–52Google Scholar
  32. Lenn NJ (1987) Neuroplasticity and the developing brain: implications for therapy. Pediatr. Neurosci. 13: 176–183PubMedCrossRefGoogle Scholar
  33. Levene M, Dowling S, Graham M, Fogelman K, Galton M, Philips M (1992) Impaired motor function (clumsiness) in 5 year old children: correlation with neonatal ultrasound scans. Arch Dis Child 67: 687–690PubMedCrossRefGoogle Scholar
  34. Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kae-lin P, Boltshauer E, Duc G (1990) MR imaging of brain maturation and developmentally handicapped children. J Comput Assist Tomogr 14: 685–692PubMedCrossRefGoogle Scholar
  35. Mathews VP, King GC, Elster AD, Hamilton CA (1994) Cerebral infarction: effects of dose and magnetization transfer saturation at gadolinium-enhanced MR imaging. Radiology 190: 547–552PubMedGoogle Scholar
  36. Mickel HS, Gilles FH (1970) Changes in glial cells during human telencephalic myelinogenesis. Brain 93: 337–346PubMedCrossRefGoogle Scholar
  37. Norton WT (1981) Formation, structure and biochemistry of myelin. In: Siegel GJ, Wayne AR, Agranoff BW, Katz-man R (eds) Basic neurochemistry. Little Brown, Boston, p. 63Google Scholar
  38. Ono J. Harada K;, Sakurai K., Kodaka R., Shimidzu N., Ta-naka J., Nagai T., Okada S. (1994). MR diffusion imaging in Pelizaeus-Merzbacher disease. Brain and Development 16: 219–223.PubMedCrossRefGoogle Scholar
  39. Paneth N., Rudelli R., Monte W., Rodriguez E. Pinto J. Kairam R., Kazam E. (1990). White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer. J. Pediatr. 116: 975–984.PubMedCrossRefGoogle Scholar
  40. Peretti P, Raybaud C, Dravet C, Mancini J, Pinsard N (1989) Magnetic Resonance Imaging in partial epilepsy of childhood. J Neuroradiol 162: 308–316Google Scholar
  41. Pidcok FS, Graziani LJ, Stanley C, Mitchell DG, Merton D (1990) Neurosonographic features of periventricular echodensities associated with cerebral palsy in preterm infants. J Pediatr 116: 417–422CrossRefGoogle Scholar
  42. Rakic P (1971) Mode of migration to the superficial layers of fetal monkey neocortex. Brain Res 33: 471–476PubMedCrossRefGoogle Scholar
  43. Rorke LB (1992) Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 2: 211–221PubMedCrossRefGoogle Scholar
  44. Roth SC, Baudin J McCormick DC, Edwards AD, Towns-end J, Stewart AL, Reynolds EOR (1993) Relation between ultrasound appearance of the brain of very preterm infants and neurodevelopment impairment at eight years. Dev Med Child Neurol 35: 755–768PubMedCrossRefGoogle Scholar
  45. Rutherford MA, Pennock JM, Dubowitz LM (1994) Cranial ultrasound and magnetic resonance imaging in hy-poxic-ischaemic encephalopathy: a comparison with outcome. Dev Med Child Neurol 36: 813–825PubMedCrossRefGoogle Scholar
  46. Sarnat HB (1992) Cerebral plasticity in embryological development. In: Fukuyama Y, Suzuki Y, Kamoshita S, Casaer P (eds). Fetal and perinatal neurology. Karger, basel, p. 118Google Scholar
  47. Sarnat HB, Sarnat M (1994) When is it the best to be born? A phylogenetic perspective. In: Amiel-Tison C, Stewart A (eds). The newborn infant: one brain for life. Les Editions INSERM, Paris, p. 47Google Scholar
  48. Segal M (1995) Dendritic spines for neuroprotection: a hypothesis. Trans Int Neursci 11: 468–471Google Scholar
  49. Shaywitz BA, Fletcher JM, Shaywitz SE (1995) Defining and classifying learning disabilities and attention-deficit/hy-peractivity disorder. J Child Neurol Si: 50–57Google Scholar
  50. Sheldon RA, Chuai J, Ferriero DM (1996) A rat model for hypoxic-ischemic brain damage in very premature infants. Biol Neonate 69: 327–341PubMedCrossRefGoogle Scholar
  51. Tanttu JI, Sepponen RE, Lipton MJ, Kuusela T (1992) Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. J Comput Assist Tomogr 16: 19–24PubMedCrossRefGoogle Scholar
  52. Thornberg E, Thiringer K, Hagberg H, Kjellmer I (1995) Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral monitor trace. Arch. Dis. Child 72: 39–42Google Scholar
  53. Truwit CL, Barkovich AJ, Koch TK, Ferreiro DM (1992) Cerebral palsy: MR findings in 40 patients. An J Neurol Radiol 13: 67–78Google Scholar
  54. van der Knaap MS, Valk J (1995) Magnetic resonance of myelin, myelination and myelin disorders. Springer-Verlag. Berlin (2nd edn).Google Scholar
  55. Vannucci RC (1990) experimental biology of cerebral hy-poxia-ischemia: relation to perinatal brain damage. Pediatr Res 27: 317–326PubMedCrossRefGoogle Scholar
  56. Volpe JJ (1992) Perinatal hypoxic-ischemic brain injury: overview. In: Fukuyama Y Suzuki Y, Kamoshita S, Casaer P (eds.) Fetal and perinatal neurology. Karger, Basel, p. 232Google Scholar
  57. Volpe JJ (1995) Hypoxic-ischemic encephalopathy: biochemical and physiological aspects: In: Volpe J (ed.) Neurology of the newborn, (3rd ed) Saunders, Philadelphia, pGoogle Scholar
  58. Volpe JJ (1995) Neuronal proliferation, migration, organization and myelination. In: Volpe JJ (ed.) Neurology of the newborn, (3rd ed), Saunders, Philadelphia, p. 43Google Scholar
  59. Wiklund LM, Uvebrant P, Flodmark O (1990a) Computed tomography as an adjunct in etiological analysis of he-miplegic cerebral palsy. I: Children born at term. Neu-ropediatrics 22: 50–56Google Scholar
  60. Wiklund LM, Uvebrant P, Flodmark O (1990b) Computed tomography as an adjunct in etiological analysis of he-miplegic cerebral palsy. II: Children born before term. Neuropediatrics 22: 121–128CrossRefGoogle Scholar
  61. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: 135–144PubMedCrossRefGoogle Scholar
  62. Wolff SD, Balaban RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192: 593–599PubMedGoogle Scholar
  63. Young RSK, Petroff OAC, Novotny EJ, Wong M (1990) Neonatal excitotoxic brain injury. Physiologic, metabolic, and pathologic findings. Dev Neurosci 12: 210–230PubMedCrossRefGoogle Scholar
  64. Yoshioka K, Fujiwara K, Sawada T (1992) Perinatal hypoxic-ischemic brain injury. In: Fukuyama Y, Suzuki Y, Kamoshita S, Casaer P (eds) Fetal and perinatal neurology. Karger, Basel, p. 257Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • C. Raybaud
  • N. Girard

There are no affiliations available

Personalised recommendations