Skip to main content

31P Magnetic resonance spectroscopy and its application to autism and brain development

  • Chapter
Neuroimaging in child neuropsychiatric disorders
  • 192 Accesses

Abstract

Magnetic resonance spectroscopy (MRS) is a powerful non invasive technique for investigating the molecular metabolic underpinning of brain disorders which involve abnormalities in the development, remodeling, or turnover of neuronal membranes. MRS of the naturally-occurring phosphorus isotope (31P)is ideally suited to the study of such disorders, because of its capacity for directly measuring brain membrane production and degradation, and the bio-energetics that support normal neuronal function. MRS furthermore relies on naturally occurring isotopes and the same nuclear magnetic resonance principles as magnetic resonance imaging (MRI),making repeated studies and studies of children both possible and safe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JJ, Grove TH, Wong GG (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Ahlsen G, Rosengren L, Belfrage M (1993) Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psy-chiat 33: 734–743

    Article  CAS  Google Scholar 

  • Bailey A, Luthert P, Bolton P, LeCouteur A, Rutter M (1993) Autism and megalencephaly. Lancet 34:1225–1226

    Article  Google Scholar 

  • Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Supplement to Pediatrics 87(5): 791–796

    CAS  Google Scholar 

  • Bauman M L, Kemper T L (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The Neurobiology of Autism. Johns Hopkins Press, altimore, p 119–145

    Google Scholar 

  • Bauman ML, Kemper TL (1985). Histoanatomic observations of the brain in early infantile autism. Neurology 35: 866–874

    PubMed  CAS  Google Scholar 

  • Bolinger L, Le nkinski RE (1992) Localization in clinical NMR spectroscopy. In: Berliner LJ, Reuben J (eds) Biological Magnetic Resonance 11 In vivo spectroscopy. Plenum Press, ew York, p 1–53

    Google Scholar 

  • Bottomley PA, Cousins JP, Pendrey DL (1992) Alzheimer dementia: Quantification of energy metabolism and mobile phosphoesters with P-31 NMR spectroscopy. Radiology 183: 695–699

    PubMed  CAS  Google Scholar 

  • Bottomley PA, Charles HC, Roemer PB, Flamig D, Engeseth H, Edelstein WA, Mueller OM (1988) Human in vivo phosphate metabolite imaging with 31P NMR. Magn Reson Med 7: 319–336

    Article  PubMed  CAS  Google Scholar 

  • Buchli R, Martin E, Boesiger P, Rumpel H (1994) Developmental changes of phosphorus metabolite concentrations in the human brain: A 31P magnetic resonance spectroscopy study in vivo.Pediatr Res 35: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Clarke PG (1985). Neuronal death in the development of the vertebrate nervous system. Trends Neurosci 8: 345–349

    Article  Google Scholar 

  • Cowan WM, Fawcett JW, OLeary DDl (1984) Regressive events in neurogenesis. Science 225: 1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo.Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11: 47–63

    Article  PubMed  CAS  Google Scholar 

  • Gevins AS, Schaffer RE, Doyle JC (1983) Shadows of thought: Shifting lateralization of human brain electrical patterns during brief visuomotor task. Science 220: 97–99

    Article  PubMed  CAS  Google Scholar 

  • Gevins AS, Morgan NH, Bressler SL (1987) Human neuroe-lectric patterns predict performance accuracy. Science 235: 580–585

    Article  PubMed  CAS  Google Scholar 

  • Gevins AS, Cutillo BA, Bressler SL (1989) Event-related co-variances during a bimanual visuomotor task. II. Preparation and feedback. Electroencephalogr Clin Neuro-physiol 74: 147–160

    CAS  Google Scholar 

  • Glonek T, Kopp SJ, Kot E, Pettegrew JW (1982) P-31 nuclear magnetic resonance analysis of brain: The perchloric acid extract spectrum. J Neurochem 39: 1210–19

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Development of cortical circuitry and cognitive function. Child Dev 58: 601–622.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Rothman DL, Novotny EJ, Shulman RG (1992) Localized 13C NMR spectroscopy of myo-inositol in the human brain in vivo.Magn Reson Med 25: 204–210

    Article  PubMed  CAS  Google Scholar 

  • Haier RJ, Siegel BV, MacLachlan (1992) Regional glucose metabolic changes after learning a complex visuospa-tial/motor task: A positron emission tomographic study. Brain Res 570: 134–143

    Article  PubMed  CAS  Google Scholar 

  • Horwitz B, Rumsey JM, Grady CL, Rapoport SI (1988) The cerebral metabolic landscape in autism: Intercorrela-tions of regional glucose utilization. Arch Neurol 45: 749–755

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1975) Synaptic and dendritic development and mental defect. In: Buchwald NA, Brazier MAB (eds). Brain Mechanisms in Mental Retardation. Academic Press, New York, p 129

    Google Scholar 

  • Kilby PM, Bolas NM, Radda GK. (1991) 31P-NMR study of brain phospholipid structures in vivo. Biochem Biophys Acta 1085: 257–264

    PubMed  CAS  Google Scholar 

  • Klausner JD, Sweeney JP, Deck MD (1992) Clinical correlates of cerebral ventricular enlargement in schizophrenia. J Nerv Ment Dis 180:407

    Article  PubMed  CAS  Google Scholar 

  • Klunk WE, Xu CJ, Panchalingam K (1994) Analysis of magnetic resonance spectra by mole percent: Comparison to absolute units. Neurobiol Aging 15: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Lim KO, Pauly J, Webb P (1994) Short TE phosphorus spectroscopy using a spin-echo pulse. Magn Reson Med 32: 98–103

    Article  PubMed  CAS  Google Scholar 

  • McClure RJ, Panchalingam K, Klunk WE, Pettegrew JW (1996) Magnetic resonance spectroscopy of neural tissue. Meth Neurosci 30: 178–208

    Article  CAS  Google Scholar 

  • Mcllwain H, Bachelard HS (1985) Biochemistry and the central nervous system, (5th ed.) Churchill Livingstone-,New York, p.41–43

    Google Scholar 

  • Minshew NJ, Pettegrew JW (1996) Nuclear magnetic resonance spectroscopic studies of cortical development. In: Thatcher RW, Lyon GR, Rumsey J, Krasnegor N (eds) Developmental Neuroimaging: Mapping the Development of Brain and Behavior. Academic Press, an Diego, p 107–125

    Google Scholar 

  • Minshew NJ, Goldstein G, Siegel DJ (in press) Neuropsychologic functioning in autism: Profile of a complex information processing disorder. J Int Neuropsychol Soc

    Google Scholar 

  • Minshew NJ, Sweeney JA, Furman JM (1995) Evidence for a primary neocortical system abnormality in autism. Soc Neurosci Abs 21: 735

    Google Scholar 

  • Minshew NJ, Goldstein G, Dombrowski SM (1993) A preliminary 31P MRS study of autism: Evidence for under-synthesis and increased degradation of brain membranes. Biol Psychiat 33: 762–773

    Article  PubMed  CAS  Google Scholar 

  • Murphy DGM, Bottomley PA, Salerno J (1992) In vivo brain glucose and phosphorus metabolism in Alzheimer’s disease (abstract). Soc Neurosci 18: 567

    Google Scholar 

  • Novick B, Kurtzberg D, Vaughn HG Jr (1979) An electrophysiologic indication of defective information storage in childhood autism. Psychiat Res 1: 101–108

    Article  CAS  Google Scholar 

  • Novick B, Kurtzberg D, Vaughn HG Jr (1980) An electrophysiologic indication of auditory processing defects in autism. Psychiat Res 3: 107–114

    Article  CAS  Google Scholar 

  • Oppenheim RW (1985) Naturally occurring cell death during neural development. Trends Neurosci 8: 487–493

    Article  Google Scholar 

  • Petroff OAC, Prichard JW, Behar KL (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35: 781–788

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Minshew NJ, Cohen MM (1984) P-31 NMR changes in Alzheimer’s and Huntington’s disease brain (abstract). Neurology 34(Suppl 1): 281

    Google Scholar 

  • Pettegrew JW, Withers G, Panchalingam K (1988) Considerations for Brain pH assessment by 31P NMR. Magn Res Imag 6: 135–142

    Article  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Wither G (1990) Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J Neuropath Exp Neurol 49: 237–249

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Keshavan MS, Panchalingam K (1991a) Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. Arch Gen Psychiat 48: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Klunk WE, McClure K (1991b) Phosphomo-noesters, phospholipids and high-energy phosphates in Alzheimer’s disease: Alterations and physiological sig nificance. In: Khachaturian ZS, Blass JP (eds) Alzheimer’s Disease: New Treatment Strategies. Marcel Dekker Inc, ew York, p 193–212

    Google Scholar 

  • Pettegrew JW, Panchalingam K, Klunk WE (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease; A preliminary study. Neurobiol Aging 15: 117–132

    Article  PubMed  CAS  Google Scholar 

  • Pittman R, Oppenheim RW (1979) Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses. J Comp Neurol 187: 425–446

    Article  PubMed  CAS  Google Scholar 

  • Piven J, Arndt S, Bailey J, Andreasen N (1996) Regional brain enlargement in autism: A magnetic resonance imaging study. J Am Acad Child Psychiat 35: 1–7

    Article  Google Scholar 

  • Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P (1995) An MRI study of brain size in autism. Am J Psychiat 152: 1145–1149

    PubMed  CAS  Google Scholar 

  • Purpura DP (1979) Pathobiology of cortical neurons in metabolic and unclassified amentias. In: Katzman R (ed) Congneital and Acquired Cognitive Disorders. Raven Press, New York, p 43–68

    Google Scholar 

  • Sappy-Marinier D, Calabrese G, Hetherington HP, Fisher SN, Deicken R, Van Dyke C, Fein G, Weiner MW (1992) Proton magnetic resonance spectroscopy of human brain: Applications to normal white matter, chronic infarction, and MRI white matter signal hyperintensities. Magn Reson Med 26: 313–327

    Article  Google Scholar 

  • Siesjo B (1978) Brain energy metabolism. In: Siesjo B (ed) Brain energy metabolism (Chapter 1 and 2). John Wiley and Sons, ew York

    Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1991) Spectro-metric Identification of Organic Compounds. Wiley, New York

    Google Scholar 

  • Squire LR, Ojemann JG, Miezin FM (1992) Activation of the hippocampus in normal humans: A functional anatomical study of memory. Proc Natl Acad Sci 89: 1837–1841

    Article  PubMed  CAS  Google Scholar 

  • Vance DE (1991) Phospholipid metabolism and cell signalling in eucaryotes. In: Vance DE, Vance J (eds) Biochemistry of lipids, lipoproteins and membranes, Volume 20. Elsevier, New York, p 205–240

    Google Scholar 

  • Venter A, Lord C, Schopler E (1992) A follow-up study of high-functioning autistic children. J Child Psychol Psychiat 3: 489–507

    Article  Google Scholar 

  • Volpe JJ (1995) Neuronal proliferation, migration, organization, and myelination. In: Neurology of the Newborn, 3rd ed, Saunders WB:Philadelphia, p 43–

    Google Scholar 

  • Zilbovicius M, Garreau B, Samson Y, Remy P, Barthélémy C, Syrota A, Lelord G (1995) Delayed maturation of frontal cortex in childhood autism. Am J Psychiat 152: 248–252

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minshew, N.J., Pettegrew, J.W. (1998). 31P Magnetic resonance spectroscopy and its application to autism and brain development. In: Neuroimaging in child neuropsychiatric disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95848-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95848-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95850-2

  • Online ISBN: 978-3-642-95848-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics