Skip to main content

Summary

Scalar fields bound by their own gravitational field can form absolutely stable boson stars, resembling neutron stars. Within general relativity we construct for the first time the corresponding localized rotating configurations via numerical integration of the coupled Einstein-Klein-Gordon equations. The ratio of conserved angular momentum and particle number turns out to be an integer b, the gravitomagnetic quantum number of our soliton-type stars. The resulting axisymmetric metric, the energy density, and the Tolman mass are completely regular. Moreover, we analyze the differential rotation of such fully relativistic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wheeler, J.A. (1955): Geons. Phys. Rev. 97, 511–536

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Holz, D.E., Miller, W.A., Wakano, M., Wheeler, J.A. (1994): Coalescence of primal gravity waves to make cosmological mass without matter. In Hu, B.L., Jacobson, T.A. (eds.): Directions in general relativityProceedings of the 1993 International Symposium, Maryland (papers in honor of Dieter Brill) ,vol. 2, pp. 339–358. Cambridge University Press, Cambridge

    Google Scholar 

  3. Wheeler, J.A. (1995): The black hole, 25 years later. Preprint Princeton Uni versity

    Google Scholar 

  4. Kaup, D.J. (1968): Klein-Gordon geon. Phys. Rev. 172, 1331–1342

    Article  ADS  Google Scholar 

  5. Ruffini, R. and Bonazzola, S. (1969): Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783

    Article  ADS  Google Scholar 

  6. Heisenberg, W. (1966): Introduction to the unified field theory of elementary particles. Wiley, London

    MATH  Google Scholar 

  7. Mielke, E.W. (1981): Toward exact solutions of the nonlinear Heisenberg-Pauli-Weyl spinor equation. J. Math. Phys. 22, 2034–2039

    Article  ADS  Google Scholar 

  8. Mielke, E.W., Scherzer, R. (1981): Geon-type solutions of the nonlinear Heisenberg-Klein-Gordon equation. Phys. Rev. D 24, 2111–2126

    Article  ADS  Google Scholar 

  9. Baekler, P., Mielke, E.W., Hecht, R., Hehl, F.W. (1987): Kinky torsion in a Poincaré gauge model of gravity coupled to massless scalar field. Nucl. Phys. B 288, 800–812

    Article  MathSciNet  ADS  Google Scholar 

  10. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y. (1995): Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171

    Article  MathSciNet  ADS  Google Scholar 

  11. Colpi, M., Shapiro, S.L., Wasserman, I. (1986): Boson stars: Gravitational equilibria of self-gravitating scalar fields. Phys. Rev. Lett. 57, 2485–2488

    Article  MathSciNet  ADS  Google Scholar 

  12. Friedberg, R., Lee, T.D., Pang, Y. (1987): Mini-soliton stars. Phys. Rev. D 35, 3640–3657

    Article  ADS  Google Scholar 

  13. Friedberg, R., Lee, T.D., Pang, Y. (1987): Scalar soliton stars and black holes. Phys. Rev. D 35, 3658–3677

    Article  ADS  Google Scholar 

  14. Lee, T.D., Pang, Y. (1987): Fermion soliton stars and black holes. Phys. Rev. D 35, 3678–3694

    Article  ADS  Google Scholar 

  15. Jetzer, Ph. (1992): Boson stars. Phys. Rep. 220, 163–227

    Article  ADS  Google Scholar 

  16. Lee, T.D., Pang, Y. (1992): Nontopological solitons. Phys. Rep. 221, 251–350

    Article  MathSciNet  ADS  Google Scholar 

  17. Straumann, N. (1992): Fermion and boson stars. In Ehlers, J., Schäfer, G. (eds.): Relativistic Gravity Research ,pp. 267–293. Springer, Berlin

    Google Scholar 

  18. Kusmartsev, F.V., Mielke, E.W., Schunck, F.E. (1991): Gravitational stability of boson stars. Phys. Rev. D 43, 3895–3901

    Article  MathSciNet  ADS  Google Scholar 

  19. Kusmartsev, F.V., Mielke, E.W., Schunck, F.E. (1991): Stability of neutron and boson stars: a new approach based on catastrophe theory. Phys. Lett. B 157, 465–468

    MathSciNet  Google Scholar 

  20. Schunck, F.E., Kusmartsev, F.V., Mielke, E.W. (1992): Stability of charged boson stars and catastrophe theory. In d’Inverno, R. (ed.) Approaches to Numerical Relativity ,pp. 130–140. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  21. Kusmartsev, F.V., Schunck, F.E. (1992): Analogies and differences between neutron and boson stars studied with catastrophe theory. Physica B 178, 24–34

    Article  ADS  Google Scholar 

  22. Seidel, E., Suen, W.-M. (1994): Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett. 72, 2516–2519

    Article  ADS  Google Scholar 

  23. Schunck, F.E. (1995): A matter model for dark halos of galaxies. Preprint University of Cologne

    Google Scholar 

  24. Seidel, E., Suen, W.-M. (1990): Dynamical evolution of boson stars: Perturbing the ground state. Phys. Rev. D 42, 384–403

    Article  ADS  Google Scholar 

  25. Seidel, E., Suen, W.-M. (1991): Oscillating soliton stars. Phys. Rev. Lett. 66, 1659–1662

    Article  ADS  Google Scholar 

  26. Ferrell, R., Gleiser, M. (1989): Gravitational atoms: Gravitational radiation from excited boson stars. Phys. Rev. D 40, 2524–2531

    Article  ADS  Google Scholar 

  27. Schunck, F.E., Mielke, E.W. (1995): Radiply rotating relativistic boson stars. Submitted to Phys. Rev. Lett.

    Google Scholar 

  28. Schunck, F.E. (1995): Selbstgravitierende bosonische Materie. PhD thesis, University of Cologne (German)

    Google Scholar 

  29. Friedman, J.L., Ipser, J.R. (1992): Rapidly rotating relativistic stars. Phil. -Trans. R. Soc. (London) A 340, 391–422

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Cook, G.B., Shapiro, S.L., Teukolsky, S.A. (1994): Rapidly rotating neutron stars in general relativity: Realistic equations of state. Astrophys. J. 424, 823–845

    Article  ADS  Google Scholar 

  31. Eriguchi, Y. (1993): Equilibrium configurations of general relativistic rotating stars. In Chinea, F.J., Gonzáles-Romero, L.M. (eds.): Rotating Objects and Relativistic Physics ,pp. 3–28. Springer, Berlin

    Google Scholar 

  32. Tolman, R.C. (1934): Relativity, thermodynamics, and cosmology. Clarendon Press, Oxford

    Google Scholar 

  33. Schunck, F.E. (1991): Eigenschaften des Bosonensterns. Diploma thesis, University of Cologne (German)

    Google Scholar 

  34. Mashhoon, B. (1974): Can Einstein’s theory of gravitation be tested beyond the geometrical optics limit? Nature 250, 316–317

    Article  ADS  Google Scholar 

  35. Winicour, J. (1980): Angular momentum in general relativity. In Held, A. (ed.): General Relativity and Gravitation—One Hundred Years After the Birth of Albert Einstein ,vol. 2, pp. 71–96. Plenum Press, New York

    Google Scholar 

  36. Iyer, V., Wald, R.M. (1994): Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846–864

    Article  MathSciNet  ADS  Google Scholar 

  37. Tolman, R.C. (1930): On the use of the energy-momentum principle in general relativity. Phys. Rev. 35, 875–895

    Article  ADS  Google Scholar 

  38. Penrose, R. (1986): Gravitational mass. In Sato, H., Nakamura T. (eds.): Gravitational Collapse and Relativity ,pp. 43–59. World Scientific, Singapore

    Google Scholar 

  39. Goldman, I. (1990): Baryon number of a uniformly rotating cold star. Phys. Rev. D 42, 3386–3387

    Article  ADS  Google Scholar 

  40. Nauenberg, M., Stroud, C., Yeazell, J. (1994): The classical limit of an atom. Scientific American, June issue, p. 24–29

    Google Scholar 

  41. Ertl, T. et al. (1991): Fremde Welten auf dem Grafikschirm—Die Bedeutung der Visualisierung für die Astrophysik. Informationstechnik 33, 91–100 (German)

    Google Scholar 

  42. Thorne, K.S. (1971): Relativistic stars, black holes and gravitational waves. In Sachs, B.K. (ed.): Relativistic Stars, Black Holes and Gravitational Waves. Proceedings of the International School of Physics “Enrico Fermi”, Course XLVII, General Relativity, pp. 237–283. Academic Press, New York

    Google Scholar 

  43. Ames, W.F. (1977): Numerical methods for partial differential equations. Academic Press, New York

    MATH  Google Scholar 

  44. Kobayashi, Y., Kasai, M., Futamase, T. (1994): Does a boson star rotate? Phys. Rev. D 50, 7721–7724

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schunck, F.E., Mielke, E.W. (1996). Rotating Boson Stars. In: Hehl, F.W., Puntigam, R.A., Ruder, H. (eds) Relativity and Scientific Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95732-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95732-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95734-5

  • Online ISBN: 978-3-642-95732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics