Advertisement

Electromagnetic Properties of Superconductors

Exact Solution of the Mattis-Bardeen Equations for Bulk Material and Thin Films
  • R. Pöpel

Abstract

The main objective of this work is to show, that the theory for the anomalous skin effect in normal and superconducting metals by Mattis and Bardeen is capable of describing the electromagnetic behavior of superconductors. It is necessary to do justice to it in this way, because in many applications of this theory the equations are solved only approximately, leading to apparent discrepancies between the theory and measurement results.

Keywords

Free Path Surface Impedance Surface Resistance Bulk Conductor Bulk Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.B. Pippard, in Advances in Electronics, L. Marton, Academic Press, New York (1954)Google Scholar
  2. [2]
    R.G. Chambers, Proc. Roy. Soc. (London) A215 (1952) p. 481Google Scholar
  3. [3]
    R. Pöpel, Dissertation University of Braunschweig, (1986)Google Scholar
  4. [4]
    A.B. Pippard, Proc. Roy. Soc. (London) A216 (1953) p. 547Google Scholar
  5. [5]
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108 (1957) p. 1175MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    B. Mühlschlegel, Z. Physik 155 (1959) p. 313MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    D.C. Mattis, J. Bardeen, Phys. Rev. 111 (1958) p. 412MATHCrossRefGoogle Scholar
  8. [8]
    M. Tinkham, in Low-Temperature Physics, Mc Graw-Hill, New York (1966)Google Scholar
  9. [9]
    W. Gröbner, N.H. Hofreiter, Integraltafeln, part II, Springer Verlag, Wien, New York (1966)Google Scholar
  10. [10]
    P.B. Miller, Phys. Rev. 118 (1960) p. 928CrossRefGoogle Scholar
  11. [11]
    J.P. Turneaure, Dissertation Stanford University, Stanford, California (1967)Google Scholar
  12. [12]
    R.E. Glover, M. Tinkham, Phys. Rev. 108 (1957) p. 243CrossRefGoogle Scholar
  13. [13]
    G.E.H. Reuter, E.H. Sondheimer, Proc. Roy. Soc. (London) A195 (1948), p. 336Google Scholar
  14. [14]
    J.P. Turneaure, I. Weissman, J. Appl. Phys. 39 (1968) p. 4417CrossRefGoogle Scholar
  15. [15]
    J. Halbritter, Externer Bericht 3/69-2, KFZ Karlsruhe (1969)Google Scholar
  16. [16]
    P. Wilson, Int. Mitteilung SLAC-TN-70-35, KFZ Karlsruhe (1970)Google Scholar
  17. [17]
    M. Tinkham, Introduction to superconductivity, Mc Graw Hill, New York (1975)Google Scholar
  18. [18]
    Y. Bruynseraede et. al., Physica 54 (1971) p. 137CrossRefGoogle Scholar
  19. [19]
    A. Philipp and J. Halbritter, IEEE MAG 17 (1981) p. 951Google Scholar
  20. [20]
    P. Kneisel et. al., Advances in cryogenic engineering 22 (1977) p. 341Google Scholar
  21. [21]
    CM. Lyneis and J.P. Turneaure, IEEE MAG 13 (1977) p. 339Google Scholar
  22. [22]
    M.D. Sturge, Proc.Roy. Soc. (London) A246 (1958) p. 570Google Scholar
  23. [23]
    L. Szecsi, Z. Physik 241 (1971) p. 36CrossRefGoogle Scholar
  24. [24]
    P. Flecher et. al., Proc. of the 1969 Proton Lin. Acc. Conf., WashingtonGoogle Scholar
  25. [25]
    J.M. Pierce, HEPL Report No.514, Stanfort (1967)Google Scholar
  26. [26]
    R. Blaschke, R. Blocksdorf, Z. Physik B49 (1982) p. 99Google Scholar
  27. [27]
    W. Bauer et. al., J. Appl. Phys. 45 (1974) p. 5053Google Scholar
  28. [28]
    B. Piosczyk, Thesis KFZ Karlsruhe, Externel Report No.1991 (1974)Google Scholar
  29. [29]
    J. Hasse, J. Lachmann, Z. Physik 258 (1973) p. 136CrossRefGoogle Scholar
  30. [30]
    W.H. Henkels, C.J. Kircher, IEEE MAG 13 (1977) p. 63Google Scholar
  31. [31]
    J. Halbritter, Z. Physik 266 (1974) p. 209CrossRefGoogle Scholar
  32. [32]
    M.A. Biondi, M.P. Garfunkel, Phys. Rev. 116 (1959) p. 853CrossRefGoogle Scholar
  33. [33]
    M.A. Biondi, M.P. Garfunkel, Phys. Rev. 116 (1959) p. 862CrossRefGoogle Scholar
  34. [34]
    J.D. Leslie, D.M. Ginsberg, Phys. Rev. 133 (1966) p. 362CrossRefGoogle Scholar
  35. [35]
    D.M. Ginsberg, Phys. Rev 151 (1966) p. 241CrossRefGoogle Scholar
  36. [36]
    L. Leplae, Thesis University Maryland (1962)Google Scholar
  37. [37]
    S.L. Norman, Phys. Rev. 167 (1968) p. 393CrossRefGoogle Scholar
  38. [38]
    J.R. Hook, J. Low Temp. Phys. 23 (1976) p. 645CrossRefGoogle Scholar
  39. [39]
    M. Abramowitz and I.A. Stegun, eds., Handbook of mathematical functions, Dover, New York (1965)Google Scholar
  40. [40]
    A.R. Barnett et. al., Computer Phys. Commun. 8 (1974) p. 377CrossRefGoogle Scholar
  41. [41]
    J.C. Swihart, J. Appl. Phys. 32 (1961) p. 461CrossRefGoogle Scholar
  42. [42]
    R.L. Kautz, J. Appl. Phys. 49 (1978) p. 308CrossRefGoogle Scholar
  43. [43]
    R. Sommerhaller, H. Thomas, H. P. A. 34 (1961) p. 29Google Scholar
  44. [44]
    R. Sommerhaller, H. Thomas, H. P. A. 34 (1961) p. 265Google Scholar
  45. [45]
    S.B. Nam, Phys. Rev. 156 (1967) p. 470CrossRefGoogle Scholar
  46. [46]
    S.B. Nam, Phys. Rev. 156 (1967) p. 487CrossRefGoogle Scholar
  47. [47]
    L.H. Palmer and M. Tinkham, Phys. Rev. 165 (1968) p. 588CrossRefGoogle Scholar
  48. [48]
    R.E. Harris and D.M. Ginsberg, Phys. Rev. 188 (1969) p. 737CrossRefGoogle Scholar
  49. [49]
    W. Shaw and J.C. Swihart, Phys. Rev. Let. 20 (1968) p. 1000CrossRefGoogle Scholar
  50. [50]
    D. Karecki et. al., Phys. Rev. B 25 (1982) p. 1565Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • R. Pöpel
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations