Skip to main content

Glycolytic Rate and Histologic Grade of Human Cerebral Gliomas: A Study with [18F]Fluorodeoxyglucose and Positron Emission Tomography

  • Chapter
Positron Emission Tomography of the Brain

Abstract

The spectrum of malignancy in cerebral gliomas is quite vast, from slow-growing, relatively benign lesions (e. g., astrocytoma grade I and certain oligodendrogliomas) to highly malignant tumors characterized by a fast growth rate (e. g., astrocytoma grade IV and glioblastoma multiforme) (Kernohan and Sayre 1952). In a number of cases the preoperative recognition of the various types of cerebral gliomas represents a diagnostic challenge. Among the neuro-radiological techniques, cerebral angiography and particularly transmission X-ray computed tomography (CT) provide substantial information in this area (Tchang et al. 1977; Joyce et al. 1978). Difficulties are encountered, however, even with CT, which may be inconclusive in the detection of the early tumor and in the discrimination of neoplastic tissue from edema (Kendall et al. 1979; Lilja et al. 1981). Discrepancy between histology and the preoperative CT diagnosis is frequent (Lilja et al. 1981). Finally, the assessment of tumor recurrence following surgery, radiotherapy, and chemotherapy may be a formidable task. Quite often we are not able to ascertain if the tumor is recurring and/or if the histological type of the lesion has changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blasberg RG, Molnar P, Groothuis D, Patlak C, Fenstermacher J (1981) Simultaneous measurements of blood flow and metabolism. J Cereb Blood Flow Metabol 1 [Supp] 11: S 68-S 69

    Google Scholar 

  2. Brooks RA (1982) Alternate formula for glucose utilization using labeled deoxyglucose. J Nucl Med 23: 538–539

    PubMed  CAS  Google Scholar 

  3. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [78F]fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329

    PubMed  Google Scholar 

  4. Dickens F, Simer F (1930) The metabolism of the normal and tumor tissue. Biochem J 24: 1301–1326

    PubMed  CAS  Google Scholar 

  5. Gooche C, Rasband W, Sokoloff L (1980) Computerized densitometry and color coding of 14Cdeoxyglucose autoradiography. Ann Neurol 7: 359–370

    Article  Google Scholar 

  6. Heller IH, Elliott KHC (1955) The metabolism of normal brain and human gliomas in relation to cell type and density. Can J Biochem Physiol 33: 395–403

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput As. sist Tomogr 3: 299–308

    Article  CAS  Google Scholar 

  8. Hossman KA, Blöink M (1981) Blood flow and regulation of blood flow in experimental peritumoral edema. Stroke 12: 211–217

    Article  PubMed  CAS  Google Scholar 

  9. Hossman KA, Niebuhr I, Tamura M (1982) Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J Cereb Blood Flow Metabol 2: 25–32

    Article  Google Scholar 

  10. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1979) Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comp Assist Tomogr 3: 804–814

    CAS  Google Scholar 

  11. Huang SC, Phelps ME, Hoffman EF et al. (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69 - E82

    PubMed  CAS  Google Scholar 

  12. Ido T, Wan CN, Cassela V et al. (1978) Labeled 2deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-12-fluoro-D-glucose. J Labelled Compd Radiopharm 24: 174–183

    Google Scholar 

  13. Joyce P, Bentson J, Takahashi M, Winter J, Wilson G, Byrd S (1978) The accuracy of predicting histologic grades of supratentorial astrocytomas on the basis of computerized tomography and cerebral angiography. Neuroradiol 16: 346–48

    Article  CAS  Google Scholar 

  14. Kendall BE, Jakubowski J, Pullicino P et al. (1979) Difficulties in diagnosis of supratentorial gliomas by CAT scan. J Neurol Neurosurg Psychiatry 42: 485–92

    Article  PubMed  CAS  Google Scholar 

  15. Kernohan JW, Sayre GO (1952) Tumors of the central nervous system. In: Atlas of tumor pathology. A. F. I. P., Washington, sect 10, fasc 35

    Google Scholar 

  16. Kirsch WM, Tucker WS, Tabuchi K, Fink LM, Van Buskirk JJ, Low M (1978) The metabolism of the glioblastoma: pathological correlate. Clin Neurosurg 25: 310–325

    PubMed  CAS  Google Scholar 

  17. Larson SM, Grunbaum Z, Rasey JS (1980) Positron imaging feasibility studies: selective tumor concentration of 3H-thymidine, 3H-uridine, and 14C-2-deoxyglucose. Radiology 134: 771–773

    PubMed  CAS  Google Scholar 

  18. Lilja A, Bergström K, Spännare B, Olsson Y (1981) Reliability of computed tomography in assessing histopathological features of malignant supratentorial gliomas. J Comput Assist Tomogr 5: 625–636

    PubMed  CAS  Google Scholar 

  19. Macbeth RAL, Bekesi JG (1962) Oxygen consumption and anaerobic glycolysis of human malignant and normal tissue. Cancer Res 22: 244–248

    PubMed  CAS  Google Scholar 

  20. Perna L, Viale G, Ibba F, Anreussi L, Viale E (1964) Istocitochimica dei tumori endocranici. Neuropsychobiology 20: 419–532

    Google Scholar 

  21. Phelps ME, Huang SC, Hoffman EF et al. (1979) Tomographie measurement of local cerebral glucose metabolic rate in humans with (18F) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6: 371–388

    Article  PubMed  CAS  Google Scholar 

  22. Reivich M, Kuhl D, Wolf A et al. (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Cire Res 44: 127–137

    CAS  Google Scholar 

  23. Reulen HJ, Medzihradsky F, Enzenbach R, Marguth F, Brendel W (1969) Electrolytes, fluids, and energy metabolism in human cerebral edema. Arch Neurol 21: 517–525

    Article  PubMed  CAS  Google Scholar 

  24. Schmiedek P, Baethmann A, Sippel G, Oettinger W, Enzenbach R, Marguth F, Brendel W (1974) Energy state and glycolysis in human cerebral edema. J Neurosurg 40: 351–364

    Article  Google Scholar 

  25. Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  26. Som P, Atkins HL, Bandoypadhyay D et al. (1980) Early detection of neoplasms with a radio-labeled sugar analog. J Nucl Med 21: 670–675

    PubMed  CAS  Google Scholar 

  27. Tchang S, Scotti G, Terbrugge K, Melancon D, Belanger G, Milner C, Ethier R (1977) Computerized tomography as a possible aid to histological grading of supratentorial gliomas. J Neurosurg 46: 735–39

    Article  PubMed  CAS  Google Scholar 

  28. Timperley WR (1980) Glycolysis in neuroectodermal tumours. In: Thomas BT, Graham DI (eds) Brain tumours: scientific basis, clinical investigation and current therapy. Butterworth, London, pp 145–167

    Google Scholar 

  29. Warburg O (1930) The metabolism of tumors. Constable, London, pp 75–327

    Google Scholar 

  30. Warburg O (1956) On the origin of cancer cells. Science 123: 309–314

    Article  PubMed  CAS  Google Scholar 

  31. Weber G (1977) Enzymology of cancer cells. N Engl J Med 296: 486–493, 541–551

    Google Scholar 

  32. Weinhouse S (1972) Glycolysis, respiration, and anomalous gene expression in experimental hepatomas. Cancer Res 32: 2007–2016

    PubMed  CAS  Google Scholar 

  33. Williams CW, Crabtree MC, Burgiss SG (1979) Design and performance characteristics of a positron emission computed axial tomograph–ECAT-II. IEEE Trans Nucl Sci NS-26: 619–627

    Google Scholar 

  34. Wolleman M (1972) Biochemistry of brain tumors. In: Lajtha A (ed) Handbook of neurochemistry. Plenum, New York pp 503–542

    Google Scholar 

  35. Yamada K, Hayakawa T, Ushio Y, Kato A, Arita N, Mogami H (1981) Regional blood flow, capillary permeability, and glucose metabolism in the rate with ethylnitrosourea induced rate gliomas. J Cereb Blood Flow Metabol 1 [Suppl 1]: S571–572

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DiChiro, G. et al. (1983). Glycolytic Rate and Histologic Grade of Human Cerebral Gliomas: A Study with [18F]Fluorodeoxyglucose and Positron Emission Tomography. In: Heiss, WD., Phelps, M.E. (eds) Positron Emission Tomography of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95428-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95428-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12130-5

  • Online ISBN: 978-3-642-95428-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics