Glycolytic Rate and Histologic Grade of Human Cerebral Gliomas: A Study with [18F]Fluorodeoxyglucose and Positron Emission Tomography

  • G. DiChiro
  • R. A. Brooks
  • L. Sokoloff
  • N. J. Patronas
  • R. L. DeLaPaz
  • B. H. Smith
  • P. L. Kornblith


The spectrum of malignancy in cerebral gliomas is quite vast, from slow-growing, relatively benign lesions (e. g., astrocytoma grade I and certain oligodendrogliomas) to highly malignant tumors characterized by a fast growth rate (e. g., astrocytoma grade IV and glioblastoma multiforme) (Kernohan and Sayre 1952). In a number of cases the preoperative recognition of the various types of cerebral gliomas represents a diagnostic challenge. Among the neuro-radiological techniques, cerebral angiography and particularly transmission X-ray computed tomography (CT) provide substantial information in this area (Tchang et al. 1977; Joyce et al. 1978). Difficulties are encountered, however, even with CT, which may be inconclusive in the detection of the early tumor and in the discrimination of neoplastic tissue from edema (Kendall et al. 1979; Lilja et al. 1981). Discrepancy between histology and the preoperative CT diagnosis is frequent (Lilja et al. 1981). Finally, the assessment of tumor recurrence following surgery, radiotherapy, and chemotherapy may be a formidable task. Quite often we are not able to ascertain if the tumor is recurring and/or if the histological type of the lesion has changed.


Positron Emission Tomography Blood Flow Limitation Astrocytoma Grade Cortical Suppression Glycolytic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasberg RG, Molnar P, Groothuis D, Patlak C, Fenstermacher J (1981) Simultaneous measurements of blood flow and metabolism. J Cereb Blood Flow Metabol 1 [Supp] 11: S 68-S 69Google Scholar
  2. 2.
    Brooks RA (1982) Alternate formula for glucose utilization using labeled deoxyglucose. J Nucl Med 23: 538–539PubMedGoogle Scholar
  3. 3.
    Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [78F]fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329PubMedGoogle Scholar
  4. 4.
    Dickens F, Simer F (1930) The metabolism of the normal and tumor tissue. Biochem J 24: 1301–1326PubMedGoogle Scholar
  5. 5.
    Gooche C, Rasband W, Sokoloff L (1980) Computerized densitometry and color coding of 14Cdeoxyglucose autoradiography. Ann Neurol 7: 359–370CrossRefGoogle Scholar
  6. 6.
    Heller IH, Elliott KHC (1955) The metabolism of normal brain and human gliomas in relation to cell type and density. Can J Biochem Physiol 33: 395–403PubMedCrossRefGoogle Scholar
  7. 7.
    Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput As. sist Tomogr 3: 299–308CrossRefGoogle Scholar
  8. 8.
    Hossman KA, Blöink M (1981) Blood flow and regulation of blood flow in experimental peritumoral edema. Stroke 12: 211–217PubMedCrossRefGoogle Scholar
  9. 9.
    Hossman KA, Niebuhr I, Tamura M (1982) Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J Cereb Blood Flow Metabol 2: 25–32CrossRefGoogle Scholar
  10. 10.
    Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1979) Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comp Assist Tomogr 3: 804–814Google Scholar
  11. 11.
    Huang SC, Phelps ME, Hoffman EF et al. (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69 - E82PubMedGoogle Scholar
  12. 12.
    Ido T, Wan CN, Cassela V et al. (1978) Labeled 2deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-12-fluoro-D-glucose. J Labelled Compd Radiopharm 24: 174–183Google Scholar
  13. 13.
    Joyce P, Bentson J, Takahashi M, Winter J, Wilson G, Byrd S (1978) The accuracy of predicting histologic grades of supratentorial astrocytomas on the basis of computerized tomography and cerebral angiography. Neuroradiol 16: 346–48CrossRefGoogle Scholar
  14. 14.
    Kendall BE, Jakubowski J, Pullicino P et al. (1979) Difficulties in diagnosis of supratentorial gliomas by CAT scan. J Neurol Neurosurg Psychiatry 42: 485–92PubMedCrossRefGoogle Scholar
  15. 15.
    Kernohan JW, Sayre GO (1952) Tumors of the central nervous system. In: Atlas of tumor pathology. A. F. I. P., Washington, sect 10, fasc 35Google Scholar
  16. 16.
    Kirsch WM, Tucker WS, Tabuchi K, Fink LM, Van Buskirk JJ, Low M (1978) The metabolism of the glioblastoma: pathological correlate. Clin Neurosurg 25: 310–325PubMedGoogle Scholar
  17. 17.
    Larson SM, Grunbaum Z, Rasey JS (1980) Positron imaging feasibility studies: selective tumor concentration of 3H-thymidine, 3H-uridine, and 14C-2-deoxyglucose. Radiology 134: 771–773PubMedGoogle Scholar
  18. 18.
    Lilja A, Bergström K, Spännare B, Olsson Y (1981) Reliability of computed tomography in assessing histopathological features of malignant supratentorial gliomas. J Comput Assist Tomogr 5: 625–636PubMedGoogle Scholar
  19. 19.
    Macbeth RAL, Bekesi JG (1962) Oxygen consumption and anaerobic glycolysis of human malignant and normal tissue. Cancer Res 22: 244–248PubMedGoogle Scholar
  20. 20.
    Perna L, Viale G, Ibba F, Anreussi L, Viale E (1964) Istocitochimica dei tumori endocranici. Neuropsychobiology 20: 419–532Google Scholar
  21. 21.
    Phelps ME, Huang SC, Hoffman EF et al. (1979) Tomographie measurement of local cerebral glucose metabolic rate in humans with (18F) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6: 371–388PubMedCrossRefGoogle Scholar
  22. 22.
    Reivich M, Kuhl D, Wolf A et al. (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Cire Res 44: 127–137Google Scholar
  23. 23.
    Reulen HJ, Medzihradsky F, Enzenbach R, Marguth F, Brendel W (1969) Electrolytes, fluids, and energy metabolism in human cerebral edema. Arch Neurol 21: 517–525PubMedCrossRefGoogle Scholar
  24. 24.
    Schmiedek P, Baethmann A, Sippel G, Oettinger W, Enzenbach R, Marguth F, Brendel W (1974) Energy state and glycolysis in human cerebral edema. J Neurosurg 40: 351–364CrossRefGoogle Scholar
  25. 25.
    Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar
  26. 26.
    Som P, Atkins HL, Bandoypadhyay D et al. (1980) Early detection of neoplasms with a radio-labeled sugar analog. J Nucl Med 21: 670–675PubMedGoogle Scholar
  27. 27.
    Tchang S, Scotti G, Terbrugge K, Melancon D, Belanger G, Milner C, Ethier R (1977) Computerized tomography as a possible aid to histological grading of supratentorial gliomas. J Neurosurg 46: 735–39PubMedCrossRefGoogle Scholar
  28. 28.
    Timperley WR (1980) Glycolysis in neuroectodermal tumours. In: Thomas BT, Graham DI (eds) Brain tumours: scientific basis, clinical investigation and current therapy. Butterworth, London, pp 145–167Google Scholar
  29. 29.
    Warburg O (1930) The metabolism of tumors. Constable, London, pp 75–327Google Scholar
  30. 30.
    Warburg O (1956) On the origin of cancer cells. Science 123: 309–314PubMedCrossRefGoogle Scholar
  31. 31.
    Weber G (1977) Enzymology of cancer cells. N Engl J Med 296: 486–493, 541–551Google Scholar
  32. 32.
    Weinhouse S (1972) Glycolysis, respiration, and anomalous gene expression in experimental hepatomas. Cancer Res 32: 2007–2016PubMedGoogle Scholar
  33. 33.
    Williams CW, Crabtree MC, Burgiss SG (1979) Design and performance characteristics of a positron emission computed axial tomograph–ECAT-II. IEEE Trans Nucl Sci NS-26: 619–627Google Scholar
  34. 34.
    Wolleman M (1972) Biochemistry of brain tumors. In: Lajtha A (ed) Handbook of neurochemistry. Plenum, New York pp 503–542Google Scholar
  35. 35.
    Yamada K, Hayakawa T, Ushio Y, Kato A, Arita N, Mogami H (1981) Regional blood flow, capillary permeability, and glucose metabolism in the rate with ethylnitrosourea induced rate gliomas. J Cereb Blood Flow Metabol 1 [Suppl 1]: S571–572Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • G. DiChiro
  • R. A. Brooks
  • L. Sokoloff
  • N. J. Patronas
  • R. L. DeLaPaz
  • B. H. Smith
  • P. L. Kornblith

There are no affiliations available

Personalised recommendations