Advertisement

Modellbildung und Modellreduktion für Prozesse der Chemischen Verfahrenstechnik

  • G. Eigenberger
Conference paper
Part of the Fachberichte Messen · Steuern · Regeln book series (FACHBERICHTE, volume 1)

Modeling and Model Reduction for Chemical Engineering Processes

Summary

Chemical engineering processes usually are strongly nonlinear; they are modeled either by high order systems of ordinary differential equations or by partial differential equations. Modern state space control methods on the other hand can reasonably be applied only to linear systems of low to medium order. Hence techniques are required which allow to approximate the behaviour of high order non-linear models within a certain range of operating conditions by low order linear models.

Two different methods of model reduction are discussed. The model of a three component distillation column with side stream products is reduced by means of a least squares approximation to its transient temperature response. The model for a catalytic fixed bed reactor is reduced by non-equidistant discretization of the spatial derivatives and linearization of the resulting system of ordinary differential equations. In both cases the resulting linear models contain only a few temperatures as the "reduced states" of the system. Cases, where this kind of model reduction fails are briefly discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    K. Gewinner: Regelungstechnik 24 (1977) S. 325–333Google Scholar
  2. [2]
    M. Heckle, B. Seid, W. Gilles: INTERKAMA-Kongress 1974 Berichtsband VDI-Verlag Düsseldorf 1974, S. 197–207Google Scholar
  3. [3]
    C.D. Holland: Fundamentals and Modeling of Separation Processes, Prentice Hall Inc. 1975Google Scholar
  4. [4]
    M. Heckle, B. Seid: Regelungstechnik 21 (1973), S. 250–261Google Scholar
  5. [5]
    M. Heckle, B. Seid, W. Gilles: Chem. Ing. Technik 47 (1975), S. 183–187CrossRefGoogle Scholar
  6. [6]
    R.G. Wilson, D.E. Seborg, D.G. Fisher: Canad. Jl. Chem. Eng. 54 (1976), S. 220–226CrossRefGoogle Scholar
  7. [7]
    B.A. Finlayson: The Method of Weighted Residuals and the Variational Principle, Academic Press, N.Y. 1972Google Scholar
  8. [8]
    H.B. Vakil, M.L. Michelsen, A.S. Foss: Ind. Eng. Chem. Fundam. 12 (1973), S. 323–335CrossRefGoogle Scholar
  9. [9]
    B. Lübeck: Chem. Eng. Jl. 7 (1974), S. 29–40CrossRefGoogle Scholar
  10. [10]
    G. Eigenberger, J.B. Butt: Chem. Eng. Sci., 31 (1976), S. 681–691CrossRefGoogle Scholar
  11. [11]
    F. Silberberger: Dynamische Modelle und Simulation chemischer Prozesse, Teil II: Destillationskolonnen PDV-Berichte KFK-PDV95, Gesellschaft für Kernforschung, Karlsruhe 1977Google Scholar
  12. [12]
    G. Padberg, E. Wicke: Chem. Eng. Sci. 22 (1967) S. 1035–1051CrossRefGoogle Scholar
  13. [13]
    G. Eigenberger: Chem. Eng. Sci. 27 (1972), S. 1909–1924CrossRefGoogle Scholar
  14. [14]
    G. Eigenberger: Regelungstechnik 23 (1975) S. 118–126Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1977

Authors and Affiliations

  • G. Eigenberger
    • 1
  1. 1.Abt. Technische InformatikBASF AG LudwigshafenDeutschland

Personalised recommendations